A review of thermosensitive antinutritional factors in plant-based foods
Xin Kong
College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
Contribution: Conceptualization, Formal analysis, Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
You Li
College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
Correspondence
You Li and Xinqi Liu, Department of Food Quality and Safety, College of Food and Health, Beijing Technology and Business University, No 33, Fucheng Road, Haidian District, Beijing 100048, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Methodology, Supervision, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Xinqi Liu
College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
Correspondence
You Li and Xinqi Liu, Department of Food Quality and Safety, College of Food and Health, Beijing Technology and Business University, No 33, Fucheng Road, Haidian District, Beijing 100048, China.
Email: [email protected] and [email protected]
Contribution: Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorXin Kong
College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
Contribution: Conceptualization, Formal analysis, Investigation, Writing - original draft
Search for more papers by this authorCorresponding Author
You Li
College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
Correspondence
You Li and Xinqi Liu, Department of Food Quality and Safety, College of Food and Health, Beijing Technology and Business University, No 33, Fucheng Road, Haidian District, Beijing 100048, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Methodology, Supervision, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Xinqi Liu
College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
Correspondence
You Li and Xinqi Liu, Department of Food Quality and Safety, College of Food and Health, Beijing Technology and Business University, No 33, Fucheng Road, Haidian District, Beijing 100048, China.
Email: [email protected] and [email protected]
Contribution: Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorAbstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation.
Practical applications
Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
REFERENCES
- Adeleye, O. O., Awodiran, S. T., Ajayi, A. O., & Ogunmoyela, T. F. (2020). Effect of high-temperature, short-time cooking conditions on in vitro protein digestibility, enzyme inhibitor activity and amino acid profile of selected legume grains. Heliyon, 6(11), e05419. https://doi.org/10.1016/j.heliyon.2020.e05419
- Agundis, C., Pereyra, A., Zenteno, R., Brassart, C., Sierra, C., Vazquez, L., & Zenteno, E. (2000). Quantification of lectin in freshwater prawn (Macrobrachium rosenbergii) hemolymph by ELISA. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 127(2), 165–172. https://doi.org/10.1016/s0305-0491(00)00248-0
- Andre, E., & Hou, K.-W. (1932). The presence of a lipoid oxidase in soybean, Glycine soya Lieb. Comptes Rendues d'Academie des Sciences (Paris), 194, 645–647.
- Anthon, G. E., & Barrett, D. M. (2001). Colorimetric method for the determination of lipoxygenase activity. Journal of Agricultural and Food Chemistry, 49(1), 32–37. https://doi.org/10.1021/jf000871s
- Aune, D. (2019). Plant foods, antioxidant biomarkers, and the risk of cardiovascular disease, cancer, and mortality: A review of the evidence. Advances in Nutrition, 10(Suppl_4), S404–S421. https://doi.org/10.1093/advances/nmz042
- Aviles-Gaxiola, S., Chuck-Hernandez, C., Rocha-Pizana, M. D., Garcia-Lara, S., Lopez-Castillo, L. M., & Serna-Saldivar, S. O. (2018). Effect of thermal processing and reducing agents on trypsin inhibitor activity and functional properties of soybean and chickpea protein concentrates. LWT-Food Science and Technology, 98, 629–634. https://doi.org/10.1016/j.lwt.2018.09.023
- Axerold, B., Chesbrough, T. M., & Laakso, S. (1981). Lipoxygenase from soybeans. EC 1.13.11.12 Linoleate: Oxygen oxidoreductase. Methods in Enzymology, 71, 441–451.
- Aziz, A. B., Grossman, S., Ascarelli, I., & Budowski, P. (1971). Carotene-bleaching activities of lipoxygenase and heme proteins as studied by a direct spectrophotometric method. Phytochemistry, 10(7), 1445–1452. https://doi.org/10.1016/0031-9422(71)85006-9
- Bacon, J. R., Wanigatunga, S. C. D. R., An, J., & Fenwick, G. R. (1995). A microassay for the analysis of trypsin inhibitor activity in peas. Food Chemistry, 52(1), 77–80. https://doi.org/10.1016/0308-8146(94)p4184-h
- Bai, C. Z., Hao, J. Q., Hao, X. L., & Feng, M. L. (2018). Preparation of Astragalus membranaceus lectin and evaluation of its biological function. Biomedical Reports, 9(4), 345–349. https://doi.org/10.3892/br.2018.1132
- Balasubramanian, A., Durairajpandian, V., Elumalai, S., Mathivanan, N., Munirajan, A. K., & Ponnuraj, K. (2013). Structural and functional studies on urease from pigeon pea (Cajanus cajan). International Journal of Biological Macromolecules, 58, 301–309. https://doi.org/10.1016/j.ijbiomac.2013.04.055 ***.
- Balasubramanian, A., & Ponnuraj, K. (2010). Crystal structure of the first plant urease from Jack bean: 83 years of journey from its first crystal to molecular structure. Journal of Molecular Biology, 400(3), 274–283. https://doi.org/10.1016/j.jmb.2010.05.009 ***.
- Bao, Y., Zhu, D., Zhao, Y., Li, X., Gu, C., & Yu, H. (2022). Selection and identification of high-affinity aptamer of Kunitz trypsin inhibitor and their application in rapid and specific detection. Food Science & Nutrition, 10, 953–963. https://doi.org/10.1002/fsn3.2729
- Bisakowski, B., Perraud, X., & Kermasha, S. (1997). Characterization of hydroperoxides and carbonyl compounds obtained by lipoxygenase extracts of selected microorganisms. Bioscience, Biotechnology, and Biochemistry, 61(8), 1262–1269. https://doi.org/10.1271/bbb.61.1262
- Bora, P. (2014). Anti-nutritional factors in foods and their effects. Journal of Academia and Industrial Research, 3(6), 285–290.
- Borrelli, G. M., Troccoli, A., Di Fonzo, N., & Fares, C. (1999). Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chemistry, 76(3), 335–340. https://doi.org/10.1094/Cchem.1999.76.3.335
- Buescher, R., McGuire, C., & Skulman, B. (1987). Catalase, lipoxygenase, and peroxidase activities in cucumber pickles as affected by fermentation, processing, and calcium chloride. Journal of Food Science, 52(1), 228–229. https://doi.org/10.1111/j.1365-2621.1987.tb14015.x
- Byanju, B., Hojilla-Evangelista, M. P., & Lamsal, B. P. (2021). Fermentation performance and nutritional assessment of physically processed lentil and green pea flour. Journal of the Science of Food and Agriculture, 101(14), 5792–5806. https://doi.org/10.1002/jsfa.11229
- Cabrera-Orozco, A., Jiménez-Martínez, C., & Dávila-Ortíz, G. (2013). Soybean: Non-nutritional factors and their biological functionality. IntechOpen.
- Carlini, C. R., & Ligabue-Braun, R. (2016). Ureases as multifunctional toxic proteins: A review. Toxicon, 110, 90–109. https://doi.org/10.1016/j.toxicon.2015.11.020
- Cheng, H., Jin, H. X., Gai, J. Y., & Yu, D. Y. (2011). Transgenic technology and soybean quality improvement. Yi Chuan, 33(5), 431–436. https://doi.org/10.3724/sp.j.1005.2011.00431
- Clapp, C. H., Grandizio, A. M., Yang, Y., Kagey, M., Turner, D., Bicker, A., & Muskardin, D. (2002). Irreversible inactivation of soybean lipoxygenase-1 by hydrophobic thiols. Biochemistry, 41(38), 11504–11511. https://doi.org/10.1021/bi020229m
- Clemente, A., & Arques Mdel, C. (2014). Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World Journal of Gastroenterology, 20(30), 10305–10315. https://doi.org/10.3748/wjg.v20.i30.10305
- Clescen, L., Greenberg, A., & Ea Ton, A. (1998). Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation.
- Coscueta, E. R., Pintado, M. E., Pico, G. A., Knobel, G., Boschetti, C. E., Malpiedi, L. P., & Nerli, B. B. (2017). Continuous method to determine the trypsin inhibitor activity in soybean flour. Food Chemistry, 214, 156–161. https://doi.org/10.1016/j.foodchem.2016.07.056 **.
- Csaky, I., & Fekete, S. (2004). Soybean: Feed quality and safety. Part 1: Biologically active components. A review. Acta Veterinaria Hungarica, 52(3), 299–313. https://doi.org/10.1556/AVet.52.2004.3.6
- Dalton, D. A. (2018). Essentiality of nickel for plants. In Nickel in soils and plants (pp. 1–20). CRC Press.
10.1201/9781315154664-1 Google Scholar
- Das, N., Kayastha, A. M., & Srivastava, P. K. (2002). Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan L) seeds. Phytochemistry, 61(5), 513–521. https://doi.org/10.1016/s0031-9422(02)00270-4
- Das, R. (2019). Anti-nutritional factor of vegetables and their effect on human body–A review. International Journal of Agriculture Environment and Biotechnology, 12(3), 209–212. https://doi.org/10.30954/0974-1712.08.2019.4
10.30954/0974?1712.08.2019.4 Google Scholar
- Du, C., Si, Y., Pang, N., Li, Y., Guo, Y., Liu, C., & Fan, H. (2022). Prokaryotic expression, purification, physicochemical properties and antifungal activity analysis of phloem protein PP2-A1 from cucumber. International Journal of Biological Macromolecules, 194, 395–401. https://doi.org/10.1016/j.ijbiomac.2021.11.081
- Ebere, U., & Godswill, A. C. (2016). Effect of some processing methods on hemagglutinin activity of lectin extracts from selected grains (cereals and legumes). International Journal of Advanced Academic Research, 2, 24–59.
- Edlbacher, S., & Litvan, F. (1941). Notiz über die Mitteilung: “Eine neue Farbenreaktion auf Aminosäuren”. Hoppe-Seyler's Zeitschrift für physiologische Chemie, 267(6), 285. https://doi.org/10.1515/bchm2.1941.267.6.285
- Emire, S. A., Jha, Y. K., & Mekam, F. (2013). Role of anti-nutritional factors in food industry. Beverage & Food World, 2, 23–28.
- Eskin, N. A., Grossman, S., & Pinsky, A. (1977). Biochemistry of lipoxygenase in relation to food quality. CRC Critical Reviews in Food Science and Nutrition, 9(1), 1–40. https://doi.org/10.1080/10408397709527229
- Essack, H., Odhav, B., & Mellem, J. J. (2017). Screening of traditional South African leafy vegetables for specific anti-nutritional factors before and after processing. Food Science and Technology, 37(3), 462–471. https://doi.org/10.1590/1678-457x.20416
- Farinon, B., Molinari, R., Costantini, L., & Merendino, N. (2020). The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients, 12(7), 1935. https://doi.org/10.3390/nu12071935
- Frederiksen, P. D., Thiel, S., Jensen, L., Hansen, A. G., Matthiesen, F., & Jensenius, J. C. (2006). Quantification of mannan-binding lectin. Journal of Immunological Methods, 315(1–2), 49–60. https://doi.org/10.1016/j.jim.2006.07.001
- Fukushige, H., Wang, C., Simpson, T. D., Gardner, H. W., & Hildebrand, D. F. (2005). Purification and identification of linoleic acid hydroperoxides generated by soybean seed lipoxygenases 2 and 3. Journal of Agricultural and Food Chemistry, 53(14), 5691–5694. https://doi.org/10.1021/jf047958o
- Galliard, T., & Phillips, D. R. (1971). Lipoxygenase from potato tubers. Partial purification and properties of an enzyme that specifically oxygenates the 9-position of linoleic acid. The Biochemical Journal, 124(2), 431–438.
- Garrison, A. R., Giomarelli, B. G., Lear-Rooney, C. M., Saucedo, C. J., Yellayi, S., Krumpe, L. R., Rose, M., Paragas, J., Bray, M., Olinger, G. G., Jr., McMahon, J., Huggins, J., & O'Keefe, B. R. (2014). The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Research, 112, 1–7. https://doi.org/10.1016/j.antiviral.2014.09.012
- Gayen, D., Ali, N., Ganguly, M., Paul, S., Datta, K., & Datta, S. K. (2014). RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell Tissue and Organ Culture, 118(2), 229–243. https://doi.org/10.1007/s11240-014-0476-6
- Ge, G., Guo, W. X., Zheng, J. B., Zhao, M. M., & Sun, W. Z. (2021). Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor. Food Hydrocolloids, 111, 106177. https://doi.org/10.1016/j.foodhyd.2020.106177 **.
- Gemede, H. F., & Ratta, N. (2014). Antinutritional factors in plant foods: Potential health benefits and adverse effects. International Journal of Nutrition and Food Sciences, 3, 284 *.
10.11648/j.ijnfs.20140304.18 Google Scholar
- Gillman, J. D., Kim, W. S., & Krishnan, H. B. (2015). Identification of a new soybean kunitz trypsin inhibitor mutation and its effect on bowman-birk protease inhibitor content in soybean seed. Journal of Agricultural and Food Chemistry, 63(5), 1352–1359. https://doi.org/10.1021/jf505220p
- Grossman, S., & Zakut, R. (1979). Determination of the activity of lipoxygenase (lipoxidase). Methods of Biochemical Analysis, 25, 303–329.
- Guilbault, G. G., & Shu, F. R. (1972). Enzyme electrodes based on the use of a carbon dioxide sensor. Urea and L-tyrosine electrodes. Analytical Chemistry, 44(13), 2161–2166. https://doi.org/10.1021/ac60321a023
- Gulland, J. A., & Holt, S. J. (1959). Estimation of growth parameters for data at unequal time intervals. ICES Journal of Marine Science, 25(1), 47–49. https://doi.org/10.1093/icesjms/25.1.47
10.1093/icesjms/25.1.47 Google Scholar
- Gwirtz, J. A., & Garcia-Casal, M. N. (2014). Processing maize flour and corn meal food products. Annals of the New York Academy of Sciences, 1312(1), 66–75. https://doi.org/10.1111/nyas.12299
- Haddad, J., & Allaf, K. (2007). A study of the impact of instantaneous controlled pressure drop on the trypsin inhibitors of soybean. Journal of Food Engineering, 79(1), 353–357. https://doi.org/10.1016/j.jfoodeng.2006.01.066
- Hayward, S., Cilliers, T., & Swart, P. (2017). Lipoxygenases: From Isolation to Application. Comprehensive Reviews in Food Science and Food Safety, 16(1), 199–211. https://doi.org/10.1111/1541-4337.12239
- He, H., Li, X., Kong, X., Zhang, C., Hua, Y., & Chen, Y. (2017). Effects of Disulfide Bond Reduction on the Conformation and Trypsin/Chymotrypsin Inhibitor Activity of Soybean Bowman-Birk Inhibitor. Journal of Agricultural and Food Chemistry, 65(11), 2461–2467. https://doi.org/10.1021/acs.jafc.6b05829
- Hemdane, S., Jacobs, P. J., Dornez, E., Verspreet, J., Delcour, J. A., & Courtin, C. M. (2016). Wheat (Triticum aestivum L.) Bran in Bread Making: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 28–42. https://doi.org/10.1111/1541-4337.12176 ****.
- Huang, J., Liao, L. M., Weinstein, S. J., Sinha, R., Graubard, B. I., & Albanes, D. (2020). Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Internal Medicine, 180(9), 1173–1184. https://doi.org/10.1001/jamainternmed.2020.2790 *****.
- Ingale, A. G., & Hivrale, A. U. (2013). Plant as a plenteous reserve of lectin. Plant Signaling & Behavior, 8(12), e26595. https://doi.org/10.4161/psb.26595
- Jallinoja, P., Niva, M., & Latvala, T. (2016). Future of sustainable eating? Examining the potential for expanding bean eating in a meat-eating culture. Futures, 83(OCT.), 4–14. https://doi.org/10.1016/j.futures.2016.03.006
- Janser, I., Vortolomei, C. M., Meka, R. K., Walsh, C. A., & Janser, R. F. J. (2013). Ethacrynic acid as a lead structure for the development of potent urease inhibitors. Comptes Rendus Chimie, 16(7), 660–664. https://doi.org/10.1016/j.crci.2013.03.020
- Jia, W. T., Yang, Z., Guo, X. N., & Zhu, K. X. (2021). Effect of superheated steam treatment on the lipid stability of dried whole wheat noodles during storage. Food, 10(6), 130333. https://doi.org/10.3390/foods10061348 ****.
- Jiang, S. Y., Ma, Z., & Ramachandran, S. (2010). Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evolutionary Biology, 10(1), 79. https://doi.org/10.1186/1471-2148-10-79
- Jiru, K., & Urga, K. (2017). Forms and contents of oxalate and calcium in some vegetables in Ethiopia. Ethiopian Journal of Health Development, 9(1), 1–7.
- Jones, D. B., & Johns, C. O. (1917). Some proteins from the Jack bean (Canavalia ensiformis). Journal of the Franklin Institute, 184(1), 119–120. https://doi.org/10.1016/S0021-9258(18)86844-2
10.1016/S0021?9258(18)86844?2 Google Scholar
- Joo, Y. C., & Oh, D. K. (2012). Lipoxygenases: Potential starting biocatalysts for the synthesis of signaling compounds. Biotechnology Advances, 30(6), 1524–1532. https://doi.org/10.1016/j.biotechadv.2012.04.004
- Juszkiewicz, A., Zaborska, W., Sepiol, J., Gora, M., & Zaborska, A. (2003). Inactivation of Jack bean urease by allicin. Journal of Enzyme Inhibition and Medicinal Chemistry, 18(5), 419–424. https://doi.org/10.1080/1475636031000152286
- Kakade, M. L., Rackis, J. J., McGhee, J. E., & Puski, G. A. (1974). Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chemistry, 51(3), 376–382.
- Katz, S. A., & Cowans, J. A. (1965). Direct potentiometric study of the urea-urease system. Biochimica et Biophysica Acta, 107(3), 605–608. https://doi.org/10.1016/0304-4165(65)90206-0
- Kavitha, M., Bobbili, K. B., & Swamy, M. J. (2010). Differential scanning calorimetric and spectroscopic studies on the unfolding of Momordica charantia lectin. Similar modes of thermal and chemical denaturation. Biochimie, 92(1), 58–64. https://doi.org/10.1016/j.biochi.2009.09.009
- Kemal, C., Louis-Flamberg, P., Krupinski-Olsen, R., & Shorter, A. L. (1987). Reductive inactivation of soybean lipoxygenase 1 by catechols: A possible mechanism for regulation of lipoxygenase activity. Biochemistry, 26(22), 7064–7072. https://doi.org/10.1021/bi00396a031
- Kikuchi, A., & Kitamura, K. (1987). Simple and rapid carotene bleaching tests for the detection of lipoxygenase isozymes in soybean seeds. Japanese Journal of Breeding, 37(1), 10–16. https://doi.org/10.1270/jsbbs1951.37.10
- Kim, I. S., & Grosch, W. (1979). Partial purification of a lipoxygenase from apples. Journal of Agricultural and Food Chemistry, 27(2), 243–246. https://doi.org/10.1021/jf60222a022
- Kim, M. Y., Ha, B. K., Jun, T. H., Hwang, E. Y., Van, K., Kuk, Y. I., & Lee, S. H. (2004). Single nucleotide polymorphism discovery and linkage mapping of lipoxygenase-2 gene (Lx(2)) in soybean. Euphytica, 135(2), 169–177. https://doi.org/10.1023/B:Euph.0000014909.40136.20
- Koch, R. B., Stern, B., & Ferrari, C. G. (1958). Linoleic acid and trilinolein as substrates for soybean lipoxidase(s). Archives of Biochemistry and Biophysics, 78(1), 165–179. https://doi.org/10.1016/0003-9861(58)90325-4
- Korkut, S., Uzuncar, S., Kilic, M. S., & Hazer, B. (2019). Electrochemical determination of urea using a gold nanoparticle-copolymer coated-enzyme modified gold electrode. Instrumentation Science & Technology, 47(1), 1–18. https://doi.org/10.1080/10739149.2018.1447486
- Kostopoulou, I., Tzani, A., Polyzos, N. I., Karadendrou, M. A., Kritsi, E., Pontiki, E., Liargkova, T., Hadjipavlou-Litina, D., Zoumpoulakis, P., & Detsi, A. (2021). Exploring the 2'-hydroxy-chalcone framework for the development of dual antioxidant and soybean lipoxygenase inhibitory agents. Molecules, 26(9), 2777. https://doi.org/10.3390/molecules26092777
- Kot, M., & Zaborska, W. (2003). Irreversible inhibition of Jack bean urease by pyrocatechol. Journal of Enzyme Inhibition and Medicinal Chemistry, 18(5), 413–417. https://doi.org/10.1080/1475636031000152268
- Krajewska, B. (2011). Hydrogen peroxide-induced inactivation of urease: Mechanism, kinetics and inhibitory potency. Journal of Molecular Catalysis B-Enzymatic, 68(3–4), 262–269. https://doi.org/10.1016/j.molcatb.2010.11.015
- Krishna, B. L., Singh, A. N., Patra, S., & Dubey, V. K. (2011). Purification, characterization and immobilization of urease from Momordica charantia seeds. Process Biochemistry, 46(7), 1486–1491. https://doi.org/10.1016/j.procbio.2011.03.022
- Lajolo, F. M., & Genovese, M. I. (2002). Nutritional significance of lectins and enzyme inhibitors from legumes. Journal of Agricultural and Food Chemistry, 50(22), 6592–6598. https://doi.org/10.1021/jf020191k
- Lam, S. K., Suter, H., Bai, M., Walker, C., Davies, R., Mosier, A. R., & Chen, D. (2018). Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Science of the Total Environment, 644, 1531–1535. https://doi.org/10.1016/j.scitotenv.2018.07.092
- Larsen, N. R., Hansen, E. H., & Guilbault, G. G. (1975). Enzyme analysis by means of the air-gap electrode-determination of urease and arginase by monitoring of the initial reaction rate. Analytica Chimica Acta, 79(1), 9–15. https://doi.org/10.1016/S0003-2670(00)89414-3
- Lee, H., Ha, M. J., Shahbaz, H. M., Kim, J. U., Jang, H., & Park, J. (2018). High hydrostatic pressure treatment for manufacturing of red bean powder: A comparison with the thermal treatment. Journal of Food Engineering, 238, 141–147. https://doi.org/10.1016/j.jfoodeng.2018.06.016
- Li, F. D., Chen, C., Ren, J., Wang, R., & Wu, P. (2015). Effect of ohmic heating of soymilk on urease inactivation and kinetic analysis in holding time. Journal of Food Science, 80(2), E307–E315. https://doi.org/10.1111/1750-3841.12738
- Li, J. K., Zhang, Y., Yu, Z. L., Wang, Y. J., Yang, Y., Liu, Z., Jiang, J., Song, M., & Wu, Y. J. (2007). Superior storage stability in low lipoxygenase maize varieties. Journal of Stored Products Research, 43(4), 530–534. https://doi.org/10.1016/j.jspr.2006.09.005
- Li, M., Li, L., Dunwell, J. M., Qiao, X., Liu, X., & Zhang, S. (2014). Characterization of the lipoxygenase (LOX) gene family in the Chinese white pear (Pyrus bretschneideri) and comparison with other members of the Rosaceae. BMC Genomics, 15(1), 444. https://doi.org/10.1186/1471-2164-15-444
- Li, Y. Q., Chen, Q., Liu, X. H., & Chen, Z. X. (2008). Inactivation of soybean lipoxygenase in soymilk by pulsed electric fields. Food Chemistry, 109(2), 408–414. https://doi.org/10.1016/j.foodchem.2008.01.001
- Linsberger-Martin, G., Weiglhofer, K., Thi Phuong, T. P., & Berghofer, E. (2013). High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT - Food Science and Technology, 51(1), 331–336. https://doi.org/10.1016/j.lwt.2012.11.008
- Liu, K. (1989). An improved colorimetric method for determining antitryptic activity in soybean products. Cereal Chemistry, 66, 415–422.
- Lo'ay, A. A., & Dawood, H. D. (2017). Minimize browning incidence of banana by postharvest active chitosan/PVA Combines with oxalic acid treatment to during shelf-life. Scientia Horticulturae, 226, 208–215. https://doi.org/10.1016/j.scienta.2017.08.046
- Los, F. G. B., Zielinski, A. A. F., Wojeicchowski, J. P., Nogueira, A., & Demiate, I. M. (2018). Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Current Opinion in Food Science, 19, 63–71. https://doi.org/10.1016/j.cofs.2018.01.010
- Machado, F. P. P., Queiroz, J. H., Oliveira, M. G. A., Piovesan, N. D., Peluzio, M. C. G., Costa, N. M. B., & Moreira, M. A. (2008). Effects of heating on protein quality of soybean flour devoid of Kunitz inhibitor and lectin. Food Chemistry, 107(2), 649–655. https://doi.org/10.1016/j.foodchem.2007.08.061
- Macomber, L., Minkara, M. S., Hausinger, R. P., & Merz, K. M., Jr. (2015). Reduction of urease activity by interaction with the flap covering the active site. Journal of Chemical Information and Modeling, 55(2), 354–361. https://doi.org/10.1021/ci500562t
- Mansur, K. H. M., Liu, F., Cheng, X., Miu, J., Li, X., Yin, R., … Fu, Y. (2021). Application of different methods to determine urease activity in enzyme engineering experiment and production. E3S Web of Conferences, 251(4), 02057. https://doi.org/10.1051/e3sconf/202125102057
10.1051/e3sconf/202125102057 Google Scholar
- Marcus, L., Prusky, D., & Jacoby, B. (1988). Purification and characterization of avocado lipoxygenase. Phytochemistry, 27(2), 323–326. https://doi.org/10.1016/0031-9422(88)83090-5
- Matias, L. L. R., Costa, R. O. A., Passos, T. S., Queiroz, J. L. C., Serquiz, A. C., Maciel, B. L. L., Santos, P. P. A., Camillo, C. S., Gonçalves, C., Amado, I. R., Pastrana, L., & Morais, A. H. A. (2019). Tamarind trypsin inhibitor in chitosan-whey protein nanoparticles reduces fasting blood glucose levels without compromising insulinemia: A preclinical study. Nutrients, 11(11), 2770. https://doi.org/10.3390/nu11112770
- Mazzei, L., Cianci, M., Musiani, F., & Ciurli, S. (2016). Inactivation of urease by 1,4-benzoquinone: Chemistry at the protein surface. Dalton Transactions, 45(13), 5455–5459. https://doi.org/10.1039/c6dt00652c
- Mazzei, L., Cianci, M., Musiani, F., Lente, G., Palombo, M., & Ciurli, S. (2017). Inactivation of urease by catechol: Kinetics and structure. Journal of Inorganic Biochemistry, 166, 182–189. https://doi.org/10.1016/j.jinorgbio.2016.11.016 ***.
- Menegassi, A., Wassermann, G. E., Olivera-Severo, D., Becker-Ritt, A. B., Martinelli, A. H., Feder, V., & Carlini, C. R. (2008). Urease from cotton (Gossypium hirsutum) seeds: Isolation, physicochemical characterization, and antifungal properties of the protein. Journal of Agricultural and Food Chemistry, 56(12), 4399–4405. https://doi.org/10.1021/jf0735275
- Meriles, S. P., Steffolani, M. E., Penci, M. C., Curet, S., Boillereaux, L., & Ribotta, P. D. (2021). Effects of low-temperature microwave treatment of wheat germ. Journal of the Science of Food and Agriculture, 102, 2538–2544. https://doi.org/10.1002/jsfa.11595
- Minor, W., Steczko, J., Stec, B., Otwinowski, Z., Bolin, J. T., Walter, R., & Axelrod, B. (1996). Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution. Biochemistry, 35(33), 10687–10701. https://doi.org/10.1021/bi960576u
- Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S. S., Manna, D., Dokania, P., Mishra, A., Patra, S. K., & Dhiman, R. (2019). Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology, 134, 110827. https://doi.org/10.1016/j.fct.2019.110827 *****.
- Mitsuda, H., Yasumoto, K., Yamamoto, A., & Kusano, T. (2014). Study on soybean lipoxygenase. Agricultural and Biological Chemistry, 31(1), 115–118. https://doi.org/10.1080/00021369.1967.10858779
10.1080/00021369.1967.10858779 Google Scholar
- Mitsuda, H., Yasumoto, K., & Yamamoto, A. (1967). Inhibition of lipoxygenase by saturated monohydric alcohols through hydrophobic bondings. Archives of Biochemistry and Biophysics, 118(3), 664–669. https://doi.org/10.1016/0003-9861(67)90403-1
- Monma, M., Fuchu, H., Sugimoto, T., Hashizume, K., & Saio, K. (1987). Inactivation mechanism of soybean lipoxygenase. Nippon Shokuhin Kogyo Gakkaishi, 34(3), 143–147. https://doi.org/10.3136/nskkk1962.34.143
- Morgunova, N. L., Rudik, F. Y., Semilet, N. A., Lovtsova, L. G., Ivanova, Z. I., & Pfeifer, S. A. (2020). Technology for reducing urease activity in soybeans. IOP Conference Series: Materials Science and Engineering, 862(6), 062005. https://doi.org/10.1088/1757-899x/862/6/062005
- Muõz-Blanco, J., & Cárdenas, J. (1986). Determination of urease activity by thermal conductivity gas chromatography. Journal of Biochemical and Biophysical Methods, 13(2), 77–84. https://doi.org/10.1016/0165-022x(86)90019-9
- Nadeem, M., Anjum, F. M., Amir, R. M., Khan, M. R., & Javed, M. S. (2010). An overview of anti-nutritional factors in cereal grains with special reference to wheat—A review. Pakistan Journal of Food Sciences, 20, 1–4 *.
- Ohta, H., Kan, S., Peng, Y. L., Furusawa, I., Shishiyama, J., & Morita, A. Y. (1991). A lipoxygenase pathway is activated in rice after infection with the rice blast fungus Magnaporthe grisea. Plant Physiology, 97(1), 94–98. https://doi.org/10.2307/4273797
- Okyay, T. O., & Rodrigues, D. F. (2013). High throughput colorimetric assay for rapid urease activity quantification. Journal of Microbiological Methods, 95(3), 324–326. https://doi.org/10.1016/j.mimet.2013.09.018
- Osman, M. A., Reid, P. M., & Weber, C. W. (2002). Thermal inactivation of tepary bean (Phaseolus acutifolius), soybean and lima bean protease inhibitors: Effect of acidic and basic pH. Food Chemistry, 78(4), 419–423. https://doi.org/10.1016/s0308-8146(02)00144-9
- Pan, L., Farouk, M. H., Qin, G., Zhao, Y., & Bao, N. (2018). The influences of soybean agglutinin and functional oligosaccharides on the intestinal tract of monogastric animals. International Journal of Molecular Sciences, 19(2), 554. https://doi.org/10.3390/ijms19020554 *****.
- Panja, S., & Adams, D. J. (2021). Urea-urease reaction in controlling properties of supramolecular hydrogels: Pros and cons. Chemistry, 27(35), 8928–8939. https://doi.org/10.1002/chem.202100490
- Park, K. M., Kim, Y. N., Choi, S. J., & Chang, P. S. (2013). Development of the simple and sensitive method for lipoxygenase assay in AOT/isooctane reversed micelles. Food Chemistry, 138(2–3), 733–738. https://doi.org/10.1016/j.foodchem.2012.11.055
- Phang, I. R. K., Chan, Y. S., Wong, K. S., & Lau, S. Y. (2018). Isolation and characterization of urease-producing bacteria from tropical peat. Biocatalysis and Agricultural Biotechnology, 13, 168–175. https://doi.org/10.1016/j.bcab.2017.12.006
- Polacco, J. C. (1976). Nitrogen metabolism in soybean tissue culture: I. Assimilation of urea. Plant Physiology, 58(3), 350–357. https://doi.org/10.1104/pp.58.3.350
- Polacco, J. C., & Havir, E. A. (1979). Comparisons of soybean urease isolated from seed and tissue culture. The Journal of Biological Chemistry, 254(5), 1707–1715.
- Prachayawarakorn, S., Prachayawasin, P., & Soponronnarit, S. (2004). Effective diffusivity and kinetics of urease inactivation and color change during processing of soybeans with superheated-steam fluidized bed. Drying Technology, 22(9), 2095–2118. https://doi.org/10.1081/Ldrt-200034265
- Purushotham, B., Radhakrishna, P. M., & Sherigara, B. S. (2007). Effects of steam conditioning and extrusion temperature on some anti-nutritional factors of soyabean (Glycine max) for pet food applications. American Journal of Animal and Veterinary Sciences, 2(1), 1–5. https://doi.org/10.3844/ajavsp.2007.1.5
- Pusztai, A. (1986). The biological effects of lectins in the diet of animals and man. Clinical Biochemistry, 5, 317–327 *****.
- Pusztai, A., Watt, W. B., & Stewart, J. C. (2002). A comprehensive scheme for the isolation of trypsin inhibitors and the agglutinin from soybean seeds. Journal of Agricultural and Food Chemistry, 39(5), 862–866. https://doi.org/10.1021/jf00005a009
- Ramadass, B., Dokladny, K., Moseley, P. L., Patel, Y. R., & Lin, H. C. (2010). Sucrose co-administration reduces the toxic effect of lectin on gut permeability and intestinal bacterial colonization. Digestive Diseases and Sciences, 55(10), 2778–2784. https://doi.org/10.1007/s10620-010-1359-2
- Reeke, G. N., Jr., Becker, J. W., Cunningham, B. A., Wang, J. L., Yahara, I., & Edelman, G. M. (1975). Structure and function of concanavalin A. Advances in Experimental Medicine and Biology, 55, 13–33. https://doi.org/10.1007/978-1-4684-0949-9_2
- Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F., & Fernandes, E. (2018). Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food and Chemical Toxicology, 120, 681–699. https://doi.org/10.1016/j.fct.2018.07.060
- Rocha, C., Durau, J. F., Barrilli, L. N. E., Dahlke, F., Maiorka, P., & Maiorka, A. (2014). The effect of raw and roasted soybeans on intestinal health, diet digestibility, and pancreas weight of broilers. Journal of Applied Poultry Research, 23(1), 71–79. https://doi.org/10.3382/japr.2013-00829
- Romero, M. V., & Barrett, D. M. (1997). Rapid methods for lipoxygenase assay in sweet corn. Journal of Food Science, 62(4), 696–700. https://doi.org/10.1111/j.1365-2621.1997.tb15438.x
- Rouge, P., Culerrier, R., Granier, C., Rance, F., & Barre, A. (2010). Characterization of IgE-binding epitopes of peanut (Arachis hypogaea) PNA lectin allergen cross-reacting with other structurally related legume lectins. Molecular Immunology, 47(14), 2359–2366. https://doi.org/10.1016/j.molimm.2010.05.006
- Royo, J., Vancanneyt, G., Perez, A. G., Sanz, C., Stormann, K., Rosahl, S., & Sanchez-Serrano, J. J. (1996). Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. The Journal of Biological Chemistry, 271(35), 21012–21019. https://doi.org/10.1074/jbc.271.35.21012
- Saa, R. W., Fombang Nig, E., Radha, C., Ndjantou, E. B., & Njintang Yanou, N. (2022). Effect of soaking, germination, and roasting on the proximate composition, antinutrient content, and some physicochemical properties of defatted Moringa oleifera seed flour. Journal of Food Processing and Preservation, 46(3), e16329. https://doi.org/10.1111/jfpp.16329
- Saadi, S., Saari, N., Ghazali, H. M., & Abdulkarim, M. S. (2022). Mitigation of antinutritional factors and protease inhibitors of defatted winged bean-seed proteins using thermal and hydrothermal treatments: Denaturation/unfolding coupled hydrolysis mechanism. Current Research in Food Science, 5, 207–221. https://doi.org/10.1016/j.crfs.2022.01.011
- Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, 2(1), 6. https://doi.org/10.1186/s43014-020-0020-5 *.
- Sanchez-Chino, X., Jimenez-Martinez, C., Davila-Ortiz, G., Alvarez-Gonzalez, I., & Madrigal-Bujaidar, E. (2015). Nutrient and nonnutrient components of legumes, and its chemopreventive activity: A review. Nutrition and Cancer, 67(3), 401–410. https://doi.org/10.1080/01635581.2015.1004729 *.
- Sancho, D., & Reise Sousa, C. (2013). Sensing of cell death by myeloid C-type lectin receptors. Current Opinion in Immunology, 25(1), 46–52. https://doi.org/10.1016/j.coi.2012.12.007
- Sarita, E., & Singh, E. (2016). Potential of millets: Nutrients composition and health benefits. Journal of Scientific and Innovative Research, 5(2), 46–50.
10.31254/jsir.2016.5204 Google Scholar
- Savage, G., & Klunklin, W. (2018). Oxalates are found in many different European and Asian foods—Effects of Cooking and Processing. Journal of Food Research, 7(3), 76. https://doi.org/10.5539/jfr.v7n3p76
- Sharma, A. (2021). A review on traditional technology and safety challenges with regard to antinutrients in legume foods. Journal of Food Science and Technology, 58(8), 2863–2883. https://doi.org/10.1007/s13197-020-04883-8
- Sharma, B., & Chugh, L. K. (2017). Two isoforms of lipoxygenase from mature grains of pearl millet [Pennisetum glaucum (L.) R. Br.]: Purification and physico-chemico-kinetic characterization. Journal of Food Science and Technology, 54(6), 1577–1584. https://doi.org/10.1007/s13197-017-2589-5
- Sharma, R., & Sharma, S. (2022). Anti-nutrient & bioactive profile, in vitro nutrient digestibility, techno-functionality, molecular and structural interactions of foxtail millet (Setaria italica L.) as influenced by biological processing techniques. Food Chemistry, 368, 130815. https://doi.org/10.1016/j.foodchem.2021.130815
- Sharma, S., Goyal, R., & Barwal, S. (2013). Domestic processing effects on physicochemical, nutritional and anti-nutritional attributes in soybean (Glycine max L. Merill). International Food Research Journal, 20(6), 3203–3209.
- Shi, Y., Mandal, R., Singh, A., & Pratap Singh, A. (2020). Legume lipoxygenase: Strategies for application in food industry. Legume Science, 2(3), e44. https://doi.org/10.1002/leg3.44 ****.
- Singh, P., Kumar, R., Sabapathy, S. N., & Bawa, A. S. (2008). Functional and edible uses of soy protein products. Comprehensive Reviews in Food Science and Food Safety, 7(1), 14–28. https://doi.org/10.1111/j.1541-4337.2007.00025.x
- Skrzypczak-Jankun, E., Borbulevych, O. Y., Zavodszky, M. I., Baranski, M. R., Padmanabhan, K., Petricek, V., & Jankun, J. (2006). Effect of crystal freezing and small-molecule binding on internal cavity size in a large protein: X-ray and docking studies of lipoxygenase at ambient and low temperature at 2.0 angstrom resolution. Acta Crystallographica Section D: Structural Biology, 62(7), 766–775. https://doi.org/10.1107/S0907444906016982
- Srivastava, P. K., Kayastha, A. M., Reddy, R. C., & Grant, D. F. (2003). Molecular asymmetry in pigeonpea urease: pH inactivation studies. Journal of Plant Biochemistry and Biotechnology, 12(1), 49–51. https://doi.org/10.1007/Bf03263159
- Su, W., Jiang, Z., Wang, C., Xu, B., Lu, Z., Wang, F., Zong, X., Jin, M., & Wang, Y. (2022). Dynamics of defatted rice bran in physicochemical characteristics, microbiota and metabolic functions during two-stage co-fermentation. International Journal of Food Microbiology, 362, 109489. https://doi.org/10.1016/j.ijfoodmicro.2021.109489
- Suhag, R., Dhiman, A., Deswal, G., Thakur, D., Sharanagat, V. S., Kumar, K., & Kumar, V. (2021). Microwave processing: A way to reduce the anti-nutritional factors (ANFs) in food grains. LWT-Food Science and Technology, 150, 111960. https://doi.org/10.1016/j.lwt.2021.111960
- Sumner, J. B., & Howell, S. F. (1936). Identification of Hemagglutinin of Jack Bean with Concanavalin A. Journal of Bacteriology, 32(2), 227–237. https://doi.org/10.1128/jb.32.2.227-237.1936
- Sumner, J.B., Sumner, R.J. (1940). The coupled oxidation of carotene and fat by carotene oxidase. Journal of Biological Chemistry, 134(2), 531–533. http://doi.org/10.1016/s0021-9258(18)73211-0
- Surrey, K. (1964). Spectrophotometric Method for Determination of Lipoxidase Activity. Plant Physiology, 39(1), 65–70. https://doi.org/10.1104/pp.39.1.65
- Suzuki, Y., Ise, K., Li, C., Honda, I., Iwai, Y., & Matsukura, U. (1999). Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds. Journal of Agricultural and Food Chemistry, 47(3), 1119–1124. https://doi.org/10.1021/jf980967a
- Takishima, K., Suga, T., & Mamiya, G. (1988). The structure of Jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. European Journal of Biochemistry, 175(1), 151–165. https://doi.org/10.1111/j.1432-1033.1988.tb14177.x
- Tavares, M. C., Oliveira, K. A., de Fatima, A., Coltro, W. K. T., & Santos, J. C. C. (2021). Paper-based analytical device with colorimetric detection for urease activity determination in soils and evaluation of potential inhibitors. Talanta, 230, 122301. https://doi.org/10.1016/j.talanta.2021.122301
- Tenaillon, M. I., & Charcosset, A. (2011). A European perspective on maize history. Comptes Rendus Biologies, 334(3), 221–228. https://doi.org/10.1016/j.crvi.2010.12.015
- Terefe, Z. K., Omwamba, M. N., & Nduko, J. M. (2021). Effect of solid state fermentation on proximate composition, antinutritional factors and in vitro protein digestibility of maize flour. Food Science & Nutrition, 9(11), 6343–6352. https://doi.org/10.1002/fsn3.2599
- Thakur, A., Sharma, V., Thakur, A., Correspondence, V., & Sharma, V. (2019). An overview of anti-nutritional factors in food. International Journal of Chemical Studies, 7, 2472–2479 *.
- Trono, D., Pastore, D., & Di Fonzo, N. (1999). Carotenoid dependent inhibition of durum wheat lipoxygenase. Journal of Cereal Science, 29(1), 99–102. https://doi.org/10.1006/jcrs.1998.0215
- Tsaneva, M., & Van Damme, E. J. M. (2020). 130 years of plant lectin research. Glycoconjugate Journal, 37(5), 533–551. https://doi.org/10.1007/s10719-020-09942-y *****.
- Vagadia, B. H., Vanga, S. K., & Raghavan, V. (2017). Inactivation methods of soybean trypsin inhibitor – A review. Trends in Food Science & Technology, 64, 115–125. https://doi.org/10.1016/j.tifs.2017.02.003 **.
- Van Dammes, E. J. M., Fouquaert, E., Lannoo, N., Vandenborre, G., Schouppe, D., & Peumans, W. J. (2011). Novel concepts about the role of lectins in the plant cell. In The molecular immunology of complex carbohydrates-3 (pp. 271–294). Springer.
10.1007/978-1-4419-7877-6_13 Google Scholar
- Vanga, S. K., Wang, J., & Raghavan, V. (2020). Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. LWT-Food Science and Technology, 131, 109708. https://doi.org/10.1016/j.lwt.2020.109708
- Vojdani, A., Afar, D., & Vojdani, E. (2020). Reaction of lectin-specific antibody with human tissue: Possible contributions to autoimmunity. Journal of Immunology Research, 2020, 1438957. https://doi.org/10.1155/2020/1438957
- Wait, R. B. (1943). The action of acetylcholine on the isolated heart of Venus mercenaria. The Biological Bulletin, 85(1), 79–85. https://doi.org/10.2307/1538271
10.2307/1538271 Google Scholar
- Wang, H., Lei, C., Zeng, Y. H., Song, Y., Zhang, Q. X., & Shi, B. (2021). Reversible inhibition of trypsin activity with soybean flour in hide bating process for leather quality improvement. Industrial Crops and Products, 161, 113222. https://doi.org/10.1016/j.indcrop.2020.113222
- Wang, R. C., Liu, J. Y., & Guo, S. T. (2018). Binding of phytate to soybean protein during the heat treatment of soymilk and its effect on protein aggregation. Food Hydrocolloids, 84, 368–378. https://doi.org/10.1016/j.foodhyd.2018.06.031
- Wang, Y. T., & Wang, L. Z. (2008). Two newly recorded species of the genus Itaquascon (Tardigrada; Hypsibiidae) from China. Journal of Forestry Research, 19(1), 67–68. https://doi.org/10.1007/s11676-008-0012-9
10.1007/s11676?008?0012?9 Google Scholar
- Wei, C. K., Ni, Z. J., Thakur, K., Liao, A. M., Huang, J. H., & Wei, Z. J. (2020). Aromatic effects of immobilized enzymatic oxidation of chicken fat on flaxseed (Linum usitatissimum L.) derived Maillard reaction products. Food Chemistry, 306, 125560. https://doi.org/10.1016/j.foodchem.2019.125560
- Werner, M. H., & Wemmer, D. E. (1991). 1H assignments and secondary structure determination of the soybean trypsin/chymotrypsin Bowman-Birk inhibitor. Biochemistry, 30(14), 3356–3364. https://doi.org/10.1021/bi00228a002
- Whitaker, J. F., Stephens, A., & Naftalin, L. (1965). A new colour reaction for ammonia and primary amines. Clinica Chimica Acta, 12(4), 466–468. https://doi.org/10.1016/0009-8981(65)90138-5
- Wills, E. D. (1956). Enzyme inhibition by allicin, the active principle of garlic. The Biochemical Journal, 63(3), 514–520. https://doi.org/10.1042/bj0630514
- Wu, Y., & Wang, Z. X. (1998). Comparison of conformational changes and inactivation of soybean lipoxygenase-1 during urea denaturation. Biochimica et Biophysica Acta, 1388(2), 325–336. https://doi.org/10.1016/s0167-4838(98)00182-4
- Xiao, Z. G., Wang, K. X., Li, F. S., Cao, H. Y., Duan, Q. S., Zhu, M. P., Wang, P., Gao, Y., & Duan, Y. M. (2021). Effect of extrusion on physical and chemical properties and storage stability of corn germ. Cereal Chemistry, 98(5), 1135–1145. https://doi.org/10.1002/cche.10464 ****.
- Yalcin, S., & Basman, A. (2015). Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples. Food Chemistry, 169, 203–210. https://doi.org/10.1016/j.foodchem.2014.07.114
- Yamamoto, K., Qi, W. M., Yokoo, Y., Miyata, H., Udayanga, K. G., Kawano, J., Yokoyama, T., Hoshi, N., & Kitagawa, H. (2010). Lectin histochemical detection of special sugars on the mucosal surfaces of the rat alimentary tract. The Journal of Veterinary Medical Science, 72(9), 1119–1127. https://doi.org/10.1292/jvms.10-0011
- Yang, Z., Zhou, Y., Xing, J.-J., Guo, X.-N., & Zhu, K.-X. (2022). Effect of superheated steam treatment and extrusion on lipid stability of black soybean noodles during storage. Food Control, 132, 108388. https://doi.org/10.1016/j.foodcont.2021.108388
- Yang, Z., Zhou, Y., Xing, J. J., Guo, X. N., & Zhu, K. X. (2021). Influence of extrusion on storage quality of dried oat noodles: Lipid degradation and off-flavours. Journal of Cereal Science, 101, 103316. https://doi.org/10.1016/j.jcs.2021.103316
- Yao, Y., Li, H., Li, J., Zhu, B., & Gao, T. (2021). Anaerobic solid-state fermentation of soybean meal with Bacillus sp. to improve nutritional quality. Frontiers in Nutrition, 8, 706977. https://doi.org/10.3389/fnut.2021.706977
- Yau, T., Dan, X., Ng, C. C., & Ng, T. B. (2015). Lectins with potential for anti-cancer therapy. Molecules, 20(3), 3791–3810. https://doi.org/10.3390/molecules20033791
- Yuan, S., Chang, S. K., Liu, Z., & Xu, B. (2008). Elimination of trypsin inhibitor activity and beany flavor in soy milk by consecutive blanching and ultrahigh-temperature (UHT) processing. Journal of Agricultural and Food Chemistry, 56(17), 7957–7963. https://doi.org/10.1021/jf801039h
- Zazai, N. (2015). Evaluation of nutritional traits of soy protein concentrate (SPC) in broiler chicks and Turkey poults (Dissertations & Theses – Gradworks. Purdue University.
- Zerangnasrabad, S., Jabbari, A., Khavari Moghadam, E., Sadeghian, H., & Seyedi, S. M. (2021). Design, synthesis, and structure-activity relationship study of O-prenylated 3-acetylcoumarins as potent inhibitors of soybean 15-lipoxygenase. Drug Development Research, 82(6), 826–834. https://doi.org/10.1002/ddr.21787
- Zhang, J., Shi, J., Ilic, S., Jun Xue, S., & Kakuda, Y. (2008). Biological properties and characterization of lectin from red kidney bean (Phaseolus vulgaris). Food Reviews International, 25(1), 12–27. https://doi.org/10.1080/87559120802458115
- Ziemlewska, A., Niziol-Lukaszewska, Z., Bujak, T., Zagorska-Dziok, M., Wojciak, M., & Sowa, I. (2021). Effect of fermentation time on the content of bioactive compounds with cosmetic and dermatological properties in Kombucha Yerba Mate extracts. Scientific Reports, 11(1), 18792. https://doi.org/10.1038/s41598-021-98191-6