Protective effect of copper II-albumin complex against aflatoxin B1- induced hepatocellular toxicity: The impact of Nrf2, PPAR-γ, and NF-kB in these protective effects
Hend M. Abo-Hiemad
Biochemistry Division, Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Search for more papers by this authorAhmed Y. Nassar
Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
Search for more papers by this authorAhmed R. Shatat
Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Search for more papers by this authorMona A. Mohamed
Biochemistry Division, Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Search for more papers by this authorMahmoud Soliman
Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
Search for more papers by this authorYousef A. Abdelrady
Faculty of Pharmacy, Assiut University, Assiut, Egypt
Search for more papers by this authorCorresponding Author
Ahmed M. Sayed
Biochemistry Laboratory, Faculty of Science, Chemistry Department, Assiut University, Assiut, Egypt
Correspondence
Ahmed M. Sayed, Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorHend M. Abo-Hiemad
Biochemistry Division, Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Search for more papers by this authorAhmed Y. Nassar
Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
Search for more papers by this authorAhmed R. Shatat
Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Search for more papers by this authorMona A. Mohamed
Biochemistry Division, Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Search for more papers by this authorMahmoud Soliman
Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
Search for more papers by this authorYousef A. Abdelrady
Faculty of Pharmacy, Assiut University, Assiut, Egypt
Search for more papers by this authorCorresponding Author
Ahmed M. Sayed
Biochemistry Laboratory, Faculty of Science, Chemistry Department, Assiut University, Assiut, Egypt
Correspondence
Ahmed M. Sayed, Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
Copper II-Albumin complex (Cu-II-Albumin complex) is a novel therapeutic target that has been used as anti-inflammatory, antioxidant, and anti-gastrointestinal toxicity. In this study, 40 rats were divided into four groups, normal control (NC), aflatoxicosed group (AF) that received Aflatoxin B1 (AFB1) (50 μg/kg of the AFB1 daily for 3 weeks), AFB1-Cu-II-Albumin prophylactic group (AF/CUC-P) that subjected to intermittent treatment between AFB1 and Cu-II-Albumin complex (0.05 g/kg Cu-II-Albumin complex) day after day for 3 weeks and AFB1-Cu-II-albumin treatment group (AF/CUC-T) that received AFB1 for 3 weeks and Cu-II-albumin complex for another 3 weeks. The hepatocellular protective effect of the Cu-II-albumin complex was assessed by evaluating the liver functions markers, hepatic histopathology, reactive oxygen species (ROS) levels (Nitric Oxide (NO) and malondialdehyde (MDA)), apoptotic genes (caspase-3 and tumor necrosis factor receptor 1 [TNF-R1]) expressions, and serological and molecular biomarkers of hepatocellular carcinoma (histamine and Glucose-Regulated Protein 78 [GRP78], respectively). Our finding showed that Cu-II-Albumin Complex administration had restored liver function, oxidative stress levels, enhanced liver tissue recovery, and reduced the expression of the apoptotic genes of the aflatoxicosed rats. In conclusion, the current study results demonstrated the protective effect of Cu-II-albumin complex against AFB1-induced hepatocellular toxicity.
Practical applications
The protective effect of Cu-II-Albumin Complex against AFB1-induced hepatocellular toxicity by assessing oxidative stress, liver biomarkers, inflammation, and histological changes of liver tissues. The protective mechanism of the Cu-II-albumin complex was also investigated. More clinical studies are required to evaluate the potential of using the Cu-II-albumin complex as a therapeutic agent against hepatocellular toxicity.
CONFLICT OF INTEREST
The authors declare that there are no competing interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Abd-Allah, A. R. A., Ahmad, S. F., Alrashidi, I., Abdel-Hamied, H. E., Zoheir, K. M. A., Ashour, A. E., Bakheet, S. A., & Attia, S. M. (2014). Involvement of histamine 4 receptor in the pathogenesis and progression of rheumatoid arthritis. International Immunology, 26(6), 325–340. https://doi.org/10.1093/intimm/dxt075
- Abdel-Magiud, D. S. (2019). Radical scavenging activities of albumin-copper complex against bromobenzene induced hepatotoxicity. Journal of Clinical Toxicology, 9, 405. https://doi.org/10.4172/2161-0495.1000405
10.4172/2161?0495.1000405 Google Scholar
- Abdel-Wahab, B. A., Ali, F. E. M., Alkahtani, S. A., Alshabi, A. M., Mahnashi, M. H., & Hassanein, E. H. M. (2020). Hepatoprotective effect of rebamipide against methotrexate-induced hepatic intoxication: Role of Nrf2/GSK-3β, NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2 signaling pathways. Immunopharmacology and Immunotoxicology, 42(5), 493–503. https://doi.org/10.1080/08923973.2020.1811307
- Ahmad, S. F., Ansari, M. A., Nadeem, A., Alzahrani, M. Z., Bakheet, S. A., & Attia, S. M. (2018). Resveratrol improves neuroimmune dysregulation through the inhibition of neuronal toll-like receptors and COX-2 signaling in BTBR T+ Itpr3tf/J mice. Neuromolecular Medicine, 20(1), 133–146. https://doi.org/10.1007/s12017-018-8483-0
- Ahmad, S. F., Attia, S. M., Zoheir, K. M. A., Ashour, A. E., & Bakheet, S. A. (2014). Attenuation of the progression of adjuvant-induced arthritis by 3-aminobenzamide treatment. International Immunopharmacology, 19(1), 52–59. https://doi.org/10.1016/j.intimp.2014.01.005
- Ahmad, S. F., Zoheir, K. M. A., Ansari, M. A., Korashy, H. M., Bakheet, S. A., Ashour, A. E., & Attia, S. M. (2015). Stimulation of the histamine 4 receptor with 4-methylhistamine modulates the effects of chronic stress on the Th1/Th2 cytokine balance. Immunobiology, 220(3), 341–349. https://doi.org/10.1016/j.imbio.2014.10.014
- Ajiboye, T. O., Yakubu, M. T., & Oladiji, A. T. (2016). Lophirones B and C prevent aflatoxin B1-induced oxidative stress and DNA fragmentation in rat hepatocytes. Pharmaceutical Biology, 54(10), 1962–1970. https://doi.org/10.3109/13880209.2015.1137603
- Aleissa, M. S., Alkahtani, S., Abd Eldaim, M. A., Ahmed, A. M., Bungău, S. G., Almutairi, B., Bin-Jumah, M., AlKahtane, A. A., Alyousif, M. S., & Abdel-Daim, M. M. (2020). Fucoidan ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with aflatoxin B(1). Oxidative Medicine and Cellular Longevity, 2020, 9316751. https://doi.org/10.1155/2020/9316751
- Bakheet, S. A., Alhuraishi, A. M., Al-Harbi, N. O., Al-Hosaini, K. A., Al-Sharary, S. D., Attia, M. M., Alhoshani, A. R., Al-Shabanah, O. A., Al-Harbi, M. M., Imam, F., Ahmad, S. F., & Attia, S. M. (2016). Alleviation of aflatoxin B1-induced genomic damage by Proanthocyanidins via modulation of DNA repair. Journal of Biochemical and Molecular Toxicology, 30(11), 559–566. https://doi.org/10.1002/jbt.21823
- Bakheet, S. A., Attia, S. M., Alwetaid, M. Y., Ansari, M. A., Zoheir, K. M. A., Nadeem, A., Al-Shabanah, O. A., Al-Harbi, M. M., & Ahmad, S. F. (2016). β-1,3-glucan reverses aflatoxin B1-mediated suppression of immune responses in mice. Life Sciences, 152, 1–13. https://doi.org/10.1016/j.lfs.2016.03.030
- Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques: Elsevier health sciences ( 6th ed.). Churchill Livingstone.
- Bourdon, J. C., Fernandes, K., Murray-Zmijewski, F., Liu, G., Diot, A., Xirodimas, D. P., Saville, M. K., & Lane, D. P. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes & Development, 19(18), 2122–2137. https://doi.org/10.1101/gad.1339905
- Carter, A. C., King, J. B., Mattes, A. O., Cai, S., Singh, N., & Cichewicz, R. H. (2019). Natural-product-inspired compounds as countermeasures against the liver carcinogen aflatoxin B1. Journal of Natural Products, 82(6), 1694–1703. https://doi.org/10.1021/acs.jnatprod.9b00290
- Chen, M.-H., Lin, C.-H., & Shih, C.-C. (2014). Antidiabetic and antihyperlipidemic effects of Clitocybe nuda on glucose transporter 4 and AMP-activated protein kinase phosphorylation in high-fat-fed mice. Evidence-based Complementary and Alternative Medicine, 2014, 981046. https://doi.org/10.1155/2014/981046
- Denoyer, D., Clatworthy, S. A. S., & Cater, M. A. (2018). Copper complexes in cancer therapy. Metal Ions in Life Sciences, 18, 469–506. https://doi.org/10.1515/9783110470734-022
- Dhakal, A., & Sbar, E. (2021). Aflatoxin toxicity. In StatPearls. StatPearls Publishing.
- Duncan, C., & White, A. R. (2012). Copper complexes as therapeutic agents. Metallomics, 4(2), 127–138. https://doi.org/10.1039/C2MT00174H
- Elgazzar, U. B., Nassar, A. Y., Esmail, M. N., & Abdallah, M. S. (2013). Role of copper-albumin complex in treatment of gastric ulcer in rats. Journal of Applied Sciences Research, 8(12), 5789–5798.
- Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
- El-Saadani, M. A., Nassar, A. Y., Abou el-Ela, S. H., Metwally, T. H., & Nafady, A. M. (1993). The protective effect of copper complexes against gastric mucosal ulcer in rats. Biochemical Pharmacology, 46(6), 1011–1018. https://doi.org/10.1016/0006-2952(93)90665-j
- Engin, A. B., & Engin, A. (2019). DNA damage checkpoint response to aflatoxin B1. Environmental Toxicology and Pharmacology, 65, 90–96. https://doi.org/10.1016/j.etap.2018.12.006
- Fan, Y., Tan, D., Zhang, X., Song, D., Chang, X., Wang, S., Yan, H., Ge, L., Yang, H., Bönnemann, C., Liu, J., Wang, S., Wu, X., Zhang, H., & Xiong, H. (2020). Nuclear factor-κB pathway mediates the molecular pathogenesis of LMNA-related muscular dystrophies. Biochemical Genetics, 58(6), 966–980. https://doi.org/10.1007/s10528-020-09989-4
- Fang, Q. A., Du, M., Chen, J., Liu, T., Zheng, Y., Liao, Z., Zhong, Q., Wang, L., Fang, X., & Wang, J. (2020). Degradation and detoxification of aflatoxin B1 by tea-derived aspergillus Niger RAF106. Toxins (Basel), 12(12), 777. https://doi.org/10.3390/toxins12120777
- Gilmore, T. D., & Garbati, M. R. (2011). Inhibition of NF-κB signaling as a strategy in disease therapy. Current Topics in Microbiology and Immunology, 349, 245–263. https://doi.org/10.1007/82_2010_105
- Hegazy, A. M., Farid, A. S., Hafez, A. S., Eid, R. M., & Nasr, S. M. (2019). Hepatoprotective and immunomodulatory effects of copper-nicotinate complex against fatty liver in rat model. Vet World, 12(12), 1903–1910. https://doi.org/10.14202/vetworld.2019.1903-1910
- Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., & Nabeshima, Y. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications, 236(2), 313–322. https://doi.org/10.1006/bbrc.1997.6943
- Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., & Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development, 13(1), 76–86. https://doi.org/10.1101/gad.13.1.76
- Ji, Y., Nyamagoud, S. B., SreeHarsha, N., Mishra, A., Gubbiyappa, S. K., & Singh, Y. (2020). Sitagliptin protects liver against aflatoxin B1-induced hepatotoxicity through upregulating Nrf2/ARE/HO-1 pathway. BioFactors, 46(1), 76–82. https://doi.org/10.1002/biof.1573
- Kamel, E. O., Hassanein, E. H. M., Ahmed, M. A., & Ali, F. E. M. (2020). Perindopril ameliorates hepatic ischemia reperfusion injury via regulation of NF-κB-p65/TLR-4, JAK1/STAT-3, Nrf-2, and PI3K/Akt/mTOR signaling pathways. The Anatomical Record (Hoboken), 303(7), 1935–1949. https://doi.org/10.1002/ar.24292
- Kanemaru, Y., Momiki, Y., Matsuura, S., Horikawa, T., Gohda, J., Inoue, J., Okamoto, Y., Fujita, M., & Otsuka, M. (2011). An artificial copper complex incorporating a cell-penetrating peptide inhibits nuclear factor-κB (NF-κB) activation. Chemical and Pharmaceutical Bulletin (Tokyo), 59(12), 1555–1558. https://doi.org/10.1248/cpb.59.1555
- Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K., & Wahli, W. (1993). Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 90(6), 2160–2164. https://doi.org/10.1073/pnas.90.6.2160
- Kensler, T. W., Roebuck, B. D., Wogan, G. N., & Groopman, J. D. (2011). Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicological sciences, 120(1), S28–S48.
- Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., & Evans, R. M. (1992). Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature, 358(6389), 771–774. https://doi.org/10.1038/358771a0
- Kolb, J. P. (2000). Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia, 14(9), 1685–1694. https://doi.org/10.1038/sj.leu.2401896
- Koohi Mohammad, K., Ghazi-Khansari, M., Hayati, F., Staji, H., Keywanloo, M., & Shahroozian, E. (2017). The role of TNF-α in aflatoxin B-1 induced hepatic toxicity in isolated perfused rat liver model. Acta Medica Iranica, 55(7), 416–421.
- Korbecki, J., Bobiński, R., & Dutka, M. (2019). Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflammation Research, 68(6), 443–458. https://doi.org/10.1007/s00011-019-01231-1
- Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(1), 17023. https://doi.org/10.1038/sigtrans.2017.23
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C[T]) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
- Lo, W.-J., Chiou, Y.-C., Hsu, Y.-T., Lam, W. S., Chang, M.-Y., Jao, S.-C., & Li, W.-S. (2007). Enzymatic and nonenzymatic synthesis of glutathione conjugates: Application to the understanding of a Parasite's defense system and alternative to the discovery of potent glutathione S-transferase inhibitors. Bioconjugate Chemistry, 18(1), 109–120. https://doi.org/10.1021/bc0601727
- Mandour, M. A. M., El-Melegy, N. T. H., Nassar, A., Nafady, A. A., & Kotb, M. I. (2005). An anti-inflammatory effect of cu (I)-nicotinic acid complex on adjuvant arthritic rat. EJ BMB, 23, 1502–1523.
- Marchese, S., Polo, A., Ariano, A., Velotto, S., Costantini, S., & Severino, L. (2018). Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins (Basel), 10(6), 214. https://doi.org/10.3390/toxins10060214
- Medina, V. A., & Rivera, E. S. (2010). Histamine receptors and cancer pharmacology. British Journal of Pharmacology, 161(4), 755–767. https://doi.org/10.1111/j.1476-5381.2010.00961.x
- Meki, A. R., Esmail Eel, D., Hussein, A. A., & Hassanein, H. M. (2004). Caspase-3 and heat shock protein-70 in rat liver treated with aflatoxin B1: Effect of melatonin. Toxicon, 43(1), 93–100. https://doi.org/10.1016/j.toxicon.2003.10.026
- Mihara, M., & Uchiyama, M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry, 86(1), 271–278. https://doi.org/10.1016/0003-2697(78)90342-1
- Nassar, A. Y., Ali, A. M., El-Baz, M. A. H., Eldien, H. M. S., Mohamed, Y. S., Latif, F. F. A., Hussein, A. M., & Nassar, M. Y. (2014). Copper ( I )-nicotinate complex promoted the synthesis of aflatoxin M 1 and Q 1 more efficiently than butylated hydroxytoluene in Afaltoxicosed rats. Global Advanced Research Journal of Medicine and Medical Sciences, 3(10), 298–307.
- Oeckinghaus, A., & Ghosh, S. (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology, 1(4), a000034. https://doi.org/10.1101/cshperspect.a000034
- Ramos-Vara, J. A. (2005). Technical aspects of immunohistochemistry. Veterinary Pathology, 42(4), 405–426. https://doi.org/10.1354/vp.42-4-405
- Roede, J. R., Stewart, B. J., & Petersen, D. R. (2010). Hepatotoxicity of reactive aldehydes. In Comprehensive Toxicology ( 9th ed., Vol. 9, pp. 581–594). Elsevier.
10.1016/B978-0-08-046884-6.01025-3 Google Scholar
- Rotimi, O. A., Rotimi, S. O., Goodrich, J. M., Adelani, I. B., Agbonihale, E., & Talabi, G. (2019). Time-course effects of acute aflatoxin B1 exposure on hepatic mitochondrial lipids and oxidative stress in rats. Frontiers in Pharmacology, 10, 467. https://doi.org/10.3389/fphar.2019.00467
- Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology, 124, 81–100. https://doi.org/10.1016/j.fct.2018.11.047
- Satake, H., Suzuki, K., Aoki, T., Otsuka, M., Sugiura, Y., Yamamoto, T., & Inoue, J. (1995). Cupric ion blocks NF kappa B activation through inhibiting the signal-induced phosphorylation of I kappa B alpha. Biochemical and Biophysical Research Communications, 216(2), 568–573. https://doi.org/10.1006/bbrc.1995.2660
- Satta, S., Mahmoud, A. M., Wilkinson, F. L., Yvonne Alexander, M., & White, S. J. (2017). The role of Nrf2 in cardiovascular function and disease. Oxidative Medicine and Cellular Longevity, 2017, 9237263. https://doi.org/10.1155/2017/9237263
- Shalkami, A. S., Hassanein, E. H. M., Sayed, A. M., Mohamed, W. R., Khalaf, M. M., & Hemeida, R. A. M. (2021). Hepatoprotective effects of phytochemicals berberine and umbelliferone against methotrexate-induced hepatic intoxication: Experimental studies and in silico evidence. Environmental Science and Pollution Research International, 28(47), 67593–67607. https://doi.org/10.1007/s11356-021-15358-4
- Shyamal, S., Latha, P. G., Suja, S. R., Shine, V. J., Anuja, G. I., Sini, S., Pradeep, S., Shikha, P., & Rajasekharan, S. (2010). Hepatoprotective effect of three herbal extracts on aflatoxin B1-intoxicated rat liver. Singapore Medical Journal, 51(4), 326–331.
- Sun, S. C. (2011). Non-canonical NF-κB signaling pathway. Cell Research, 21(1), 71–85. https://doi.org/10.1038/cr.2010.177
- Sun, S. C. (2012). The noncanonical NF-κB pathway. Immunological Reviews, 246(1), 125–140. https://doi.org/10.1111/j.1600-065X.2011.01088.x
- Vedi, M., Rasool, M., & Sabina, E. P. (2014). Amelioration of bromobenzene hepatotoxicity by Withania somnifera pretreatment: Role of mitochondrial oxidative stress. Toxicology Reports, 1, 629–638. https://doi.org/10.1016/j.toxrep.2014.08.009
- Wang, B., Liu, S., Fan, B., Xu, X., Chen, Y., Lu, R., Xu, Z., & Liu, X. (2018). PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord. The Journal of Headache and Pain, 19(1), 7. https://doi.org/10.1186/s10194-018-0836-4
- Williams, G. M., & Iatropoulos, M. J. (1996). Inhibition of the hepatocarcinogenicity of aflatoxin B1 in rats by low levels of the phenolic antioxidants butylated hydroxyanisole and butylated hydroxytoluene. Cancer Letters, 104(1), 49–53. https://doi.org/10.1016/0304-3835(96)04228-0
- Zhou, Y., Jin, Y., Yu, H., Shan, A., Shen, J., Zhou, C., Zhao, Y., Fang, H., Wang, X., Wang, J., Fu, Y., Wang, R., Li, R., & Zhang, J. (2019). Resveratrol inhibits aflatoxin B1-induced oxidative stress and apoptosis in bovine mammary epithelial cells and is involved the Nrf2 signaling pathway. Toxicon, 164, 10–15. https://doi.org/10.1016/j.toxicon.2019.03.022
- Zhu, P., Zuo, Z., Zheng, Z., Wang, F., Peng, X., Fang, J., Cui, H., Gao, C., Song, H., Zhou, Y., & Liu, X. (2017). Aflatoxin B(1) affects apoptosis and expression of death receptor and endoplasmic reticulum molecules in chicken spleen. Oncotarget, 8(59), 99531–99540. https://doi.org/10.18632/oncotarget.20595