Molecular insights on chemopreventive and anticancer potential of carvacrol: Implications from solid carcinomas
Afza Ahmad
Department of Biosciences, Integral University, Lucknow, India
Contribution: Conceptualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorMohd. Saeed
Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
Contribution: Conceptualization
Search for more papers by this authorCorresponding Author
Irfan A. Ansari
Department of Biosciences, Integral University, Lucknow, India
Correspondence
Irfan A. Ansari, Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh-226026, India.
Email: [email protected]
Contribution: Conceptualization, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorAfza Ahmad
Department of Biosciences, Integral University, Lucknow, India
Contribution: Conceptualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorMohd. Saeed
Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
Contribution: Conceptualization
Search for more papers by this authorCorresponding Author
Irfan A. Ansari
Department of Biosciences, Integral University, Lucknow, India
Correspondence
Irfan A. Ansari, Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh-226026, India.
Email: [email protected]
Contribution: Conceptualization, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorFunding information
This work was supported by the Department of Science and Technology, Govt. of India (IF170529).
Abstract
Globally, cancer is one of the deadliest diseases, estimated to cause 9.9 million deaths in 2020. Conventional cancer treatments commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search for new therapeutic drugs. Over the past few years, numerous dietary agents, medicinal plants, and their phytochemicals gained considerable therapeutic importance because of their anticancer, antiviral, anti-inflammatory, and antioxidant activities. Recent years have shown that essential oils possess therapeutic effects against numerous cancers. They are primarily used due to their lesser side effects than standard chemotherapeutic drugs. Carvacrol (CRV) is a phenolic monoterpenoid found in essential oils of oregano, thyme, pepperwort, wild bergamot, and other plants. Numerous anticancer reports of CRV substantiated that the main mechanistic action of CRV involves reduction in the viability of cancer cells and induction of apoptosis via both intrinsic and extrinsic pathways. CRV also obstructs the migration and invasion of cells leading to the suppressed proliferation rate. Furthermore, CRV mediates augmented ROS generation resulting in DNA damage and also halts the progression of cell cycle. Treatment of CRV modulates the expression of apoptotic proteins (Bax, Bad) and molecular targets of various signaling pathways (PI3K/AKT/mTOR, MAPKs, and Notch) in multiple solid carcinomas. Hence, this review aimed to acquire and disseminate the knowledge of chemopreventive and anticancer effects of CRV and the mechanisms of action already described for the compound against numerous cancers, including solid carcinomas, to guide future research.
Practical applications
Development and formulation of phytocompound based anticancer drug agents to counteract the aftereffects of chemotherapeutic drugs is a propitious approach. CRV is a monoterpenoid consisting of a phenolic group obtained from the essential oils of oregano and thyme. These plants are being used as food flavoring spice and as fragrance ingredient in various cosmetic formulations. For the use of CRV as an efficient chemopreventive agent, different therapeutic interactions of CRV along with its targeted pathways and molecules, involved in the regulation of onset and progression of various types of solid carcinomas, need to be studied and explored thoroughly.
CONFLICT OF INTEREST
The authors of the present communication declare no competing conflict of interest.
REFERENCES
- Abbasi, S., & Radi, M. (2016). Food grade microemulsion systems: Canola oil/lecithin:N-propanol/water. Food Chemistry, 194, 972–979. https://doi.org/10.1016/j.foodchem.2015.08.078
- Aeschbach, R., Löliger, J., Scott, B. C., Murcia, A., Butler, J., Halliwell, B., & Aruoma, O. I. (1994). Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 32(1), 31–36. https://doi.org/10.1016/0278-6915(84)90033-4
- Ahmad, A., & Ansari, I. A. (2020). Carvacrol exhibits chemopreventive potential against cervical cancer cells via caspase-dependent apoptosis and abrogation of cell cycle progression. Anti-cancer Agents in Medicinal Chemistry, 21(16), 2224–2235. https://doi.org/10.2174/1871520621999201230201258
- Ahmadi, Z., & Ashrafizadeh, M. (2020). Melatonin as a potential modulator of Nrf2. Fundamental & Clinical Pharmacology, 34(1), 11–19. https://doi.org/10.1111/fcp.12498
- Ahmadi, Z., Mohammadinejad, R., & Ashrafizadeh, M. (2019). Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. Journal of Drug Delivery Science and Technology, 51, 591–604. https://doi.org/10.1016/j.jddst.2019.03.017
- Alma, M. H., Mavi, A., Yildirim, A., Digrak, M., & Hirata, T. (2003). Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biological & Pharmaceutical Bulletin, 26(12), 1725–1729. https://doi.org/10.1248/bpb.26.1725
- Andreou, E., Alexopoulos, E. C., Lionis, C., Varvogli, L., Gnardellis, C., Chrousos, G. P., & Darviri, C. (2011). Perceived stress scale: Reliability and validity study in Greece. International Journal of Environmental Research and Public Health, 8(8), 3287–3298. https://doi.org/10.3390/ijerph8083287
- Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Arunasree, K. M. (2010). Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 17(8-9), 581–588. https://doi.org/10.1016/j.phymed.2009.12.008
- Ashrafizadeh, M., & Ahmadi, Z. (2019). Effects of statins on gut microbiota (microbiome). Reviews in Clinical Medicine, 6(2), 55–59.
- Ashrafizadeh, M., & Ahmadi, Z. (2019). Effect of astaxanthin treatment on the sperm quality of the mice treated with nicotine. Reviews in Clinical Medicine, 6(1), 1–5.
- Aydın, E., Türkez, H., & Keleş, M. S. (2014). The effect of carvacrol on healthy neurons and N2a cancer cells: Some biochemical, anticancerogenicity and genotoxicity studies. Cytotechnology, 66(1), 149–157. https://doi.org/10.1007/s10616-013-9547-5
- Aydin, S., Başaran, A. A., & Başaran, N. (2005). The effects of thyme volatiles on the induction of DNA damage by the heterocyclic amine IQ and mitomycin C. Mutation Research, 581(1–2), 43–53. https://doi.org/10.1016/j.mrgentox.2004.10.017
- Barta, J. A., Powell, C. A., & Wisnivesky, J. P. (2019). Global epidemiology of lung cancer. Annals of Global Health, 85(1), 8. https://doi.org/10.5334/aogh.2419
- Baser, K. H. (2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design, 14(29), 3106–3119. https://doi.org/10.2174/138161208786404227
- Bhakkiyalakshmi, E., Suganya, N., Sireesh, D., Krishnamurthi, K., Saravana Devi, S., Rajaguru, P., & Ramkumar, K. M. (2016). Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells. European Journal of Pharmacology, 772, 92–98. https://doi.org/10.1016/j.ejphar.2015.12.046
- Bhakkiyalakshmi, E., Suganya, N., Sireesh, D., Krishnamurthi, K., Saravana Devi, S., Rajaguru, P., & Ramkumar, K. M. (2016). Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells. European Journal of Pharmacology, 772, 92–98. https://doi.org/10.1016/j.ejphar.2015.12.046
- Bnyan, I., Abid, A., & Obied, H. (2014). Antibacterial activity of carvacrol against different types of bacteria. Journal of Natural Science Research, 4, 13–16.
- Boskabady, M. H., & Gholami Mahtaj, L. (2015). Lung inflammation changes and oxidative stress induced by cigarette smoke exposure in guinea pigs affected by Zataria multiflora and its constituent, carvacrol. BMC Complementary and Alternative Medicine, 15, 39. https://doi.org/10.1186/s12906-015-0574-y
- Botelho, M. A., Nogueira, N. A., Bastos, G. M., Fonseca, S. G., Lemos, T. L., Matos, F. J., & Brito, G. A. (2007). Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian Journal of Medical and Biological Research, 40(3), 349–356. https://doi.org/10.1590/S0100-879X2007000300010
- Burt, S. A., Adolfse, S. J., Ahad, D. S., Tersteeg-Zijderveld, M. H., Jongerius-Gortemaker, B. G., Post, J. A., Brüggemann, H., & Santos, R. R. (2016). Cinnamaldehyde, carvacrol and organic acids affect gene expression of selected oxidative stress and inflammation markers in IPEC-J2 cells exposed to Salmonella typhimurium. Phytotherapy Research: PTR, 30(12), 1988–2000. https://doi.org/10.1002/ptr.5705
- National Cancer Institute. (2021). https://www.cancer.gov/publications/dictionaries/cancer-terms/def/solid-tumor
- Cassidy, J., Bissett, D., Obe, R. A. S., Payne, M., & Morris-Stiff, G. (Eds.) (2015). Oxford handbook of oncology. OUP.
10.1093/med/9780199689842.001.0001 Google Scholar
- Chen, C., Dorado Garcia, H., Scheer, M., & Henssen, A. G. (2019). Current and future treatment strategies for rhabdomyosarcoma. Frontiers in Oncology, 9, 1458. https://doi.org/10.3389/fonc.2019.01458
- Chen, W. L., Barszczyk, A., Turlova, E., Deurloo, M., Liu, B., Yang, B. B., Rutka, J. T., Feng, Z. P., & Sun, H. S. (2015). Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget, 6(18), 16321–16340. https://doi.org/10.18632/oncotarget.3872
- Chubanov, V., Schäfer, S., Ferioli, S., & Gudermann, T. (2014). Natural and synthetic modulators of the TRPM7 channel. Cells, 3(4), 1089–1101. https://doi.org/10.3390/cells3041089
- Clarke, M. A., Devesa, S. S., Harvey, S. V., & Wentzensen, N. (2019). Hysterectomy-corrected uterine corpus cancer incidence trends and differences in relative survival reveal racial disparities and rising rates of nonendometrioid cancers. Journal of Clinical Oncology, 37(22), 1895. https://doi.org/10.1200/JCO.19.00151
- Cox-Georgian, D., Ramadoss, N., Dona, C., & Basu, C. (2019). Therapeutic and medicinal uses of terpenes. In N. Joshee, S. Dhekney, & P. Parajuli (Eds.), Medicinal plants. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-31269-5_15
10.1007/978-3-030-31269-5_15 Google Scholar
- Dai, W., Li, Y., Zhou, Q., Xu, Z., Sun, C., Tan, X., & Lu, L. (2014). Cetuximab inhibits oral squamous cell carcinoma invasion and metastasis via degradation of epidermal growth factor receptor. Journal of Oral Pathology & Medicine: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 43(4), 250–257. https://doi.org/10.1111/jop.12116
- Dai, W., Sun, C., Huang, S., & Zhou, Q. (2016). Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma. OncoTargets and Therapy, 9, 2297–2304. https://doi.org/10.2147/OTT.S98875
- Dalleau, S., Cateau, E., Bergès, T., Berjeaud, J. M., & Imbert, C. (2008). In vitro activity of terpenes against Candida biofilms. International Journal of Antimicrobial Agents, 31(6), 572–576. https://doi.org/10.1016/j.ijantimicag.2008.01.028
- de Groot, P. M., Wu, C. C., Carter, B. W., & Munden, R. F. (2018). The epidemiology of lung cancer. Translational Lung Cancer Research, 7(3), 220–233. https://doi.org/10.21037/tlcr.2018.05.06
- de la Taille, A., Rubin, M. A., Chen, M. W., Vacherot, F., de Medina, S. G., Burchardt, M., Buttyan, R., & Chopin, D. (2003). Beta-catenin-related anomalies in apoptosis-resistant and hormone-refractory prostate cancer cells. Clinical Cancer Research, 9(5), 1801–1807.
- Deepa, K. V., Venghateri, J. B., Khajanchi, M., Gadgil, A., & Roy, N. (2020). Cancer epidemiology literature from India: Does it reflect the reality? Journal of Public Health, 42(4), e421–e427. https://doi.org/10.1093/pubmed/fdz160
- Dela Cruz, C. S., Tanoue, L. T., & Matthay, R. A. (2011). Lung cancer: Epidemiology, etiology, and prevention. Clinics in Chest Medicine, 32(4), 605–644. https://doi.org/10.1016/j.ccm.2011.09.001
- Di, J. M., Zhou, J., Zhou, X. L., Gao, X., Shao, C. Q., Pang, J., Sun, Q. P., Zhang, Y., & Ruan, X. X. (2009). Cyclooxygenase-2 expression is associated with vascular endothelial growth factor-C and lymph node metastases in human prostate cancer. Archives of Medical Research, 40(4), 268–275. https://doi.org/10.1016/j.arcmed.2009.03.002
- Dinsa, G. D., Goryakin, Y., Fumagalli, E., & Suhrcke, M. (2012). Obesity and socioeconomic status in developing countries: A systematic review. Obesity Reviews, 13(11), 1067–1079. https://doi.org/10.1111/j.1467-789X.2012.01017.x
- Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337
- Fan, K., Li, X., Cao, Y., Qi, H., Li, L., Zhang, Q., & Sun, H. (2015). Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anti-cancer Drugs, 26(8), 813–823. https://doi.org/10.1097/CAD.0000000000000263
- Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.
- Fitsiou, E., Anestopoulos, I., Chlichlia, K., Galanis, A., Kourkoutas, I., Panayiotidis, M. I., & Pappa, A. (2016). Antioxidant and antiproliferative properties of the essential oils of Satureja thymbra and Satureja parnassica and their major constituents. Anticancer Research, 36(11), 5757–5763. https://doi.org/10.21873/anticanres.11159
- Geum, D. H., Roh, Y. C., Yoon, S. Y., Kim, H. G., Lee, J. H., Song, J. M., Lee, J. Y., Hwang, D. S., Kim, Y. D., Shin, S. H., Chung, I. K., & Kim, U. K. (2013). The impact factors on 5-year survival rate in patients operated with oral cancer. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 39(5), 207–216. https://doi.org/10.5125/jkaoms.2013.39.5.207
- Gould, M. N. (1997). Cancer chemoprevention and therapy by monoterpenes. Environmental Health Perspectives, 105(suppl 4), 977–979. https://doi.org/10.1289/ehp.97105s4977
- Grapentin, C., Barnert, S., & Schubert, R. (2015). Monitoring the stability of perfluorocarbon nanoemulsions by Cryo-TEM image analysis and dynamic light scattering. PLoS One, 10(6), e0130674. https://doi.org/10.1371/journal.pone.0130674
- Guimarães, A. G., Oliveira, G. F., Melo, M. S., Cavalcanti, S. C., Antoniolli, A. R., Bonjardim, L. R., & Quintans-Júnior, L. J. (2010). Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic & Clinical Pharmacology & Toxicology, 107(6), 949–957. https://doi.org/10.1111/j.1742-7843.2010.00609.x
- Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L. B., Tubio, J., Papaemmanuil, E., Brewer, D. S., Kallio, H., Högnäs, G., Annala, M., Kivinummi, K., Goody, V., Latimer, C., O'Meara, S., Dawson, K. J., Isaacs, W., Emmert-Buck, M. R., Nykter, M., Foster, C., Kote-Jarai, Z., … Bova, G. S. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357. https://doi.org/10.1038/nature14347
- Günes-Bayir, A., Kiziltan, H. S., Kocyigit, A., Güler, E. M., Karataş, E., & Toprak, A. (2017). Effects of natural phenolic compound carvacrol on the human gastric adenocarcinoma (AGS) cells in vitro. Anti-cancer Drugs, 28(5), 522–530. https://doi.org/10.1097/CAD.0000000000000491
- Gupta, S., Kesarla, R., & Omri, A. (2013). Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharmaceutics, 2013, 1–16. https://doi.org/10.1155/2013/848043
10.1155/2013/848043 Google Scholar
- Hassanpour, S. H., & Dehghani, M. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 4(4), 127–129. https://doi.org/10.1016/j.jcrpr.2017.07.001
10.1016/j.jcrpr.2017.07.001 Google Scholar
- He, L., Mo, H., Hadisusilo, S., Qureshi, A. A., & Elson, C. E. (1997). Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. The Journal of Nutrition, 127(5), 668–674. https://doi.org/10.1093/jn/127.5.668
- He, Q., Liu, Z., Zhao, T., Zhao, L., Zhou, X., & Wang, A. (2015). Bmi1 drives stem-like properties and is associated with migration, invasion, and poor prognosis in tongue squamous cell carcinoma. International Journal of Biological Sciences, 11(1), 1–10. https://doi.org/10.7150/ijbs.10405
- Herszényi, L., & Tulassay, Z. (2010). Epidemiology of gastrointestinal and liver tumors. European Review for Medical and Pharmacological Sciences, 14(4), 249–258.
- Horváthová, E., Sramková, M., Lábaj, J., & Slamenová, D. (2006). Study of cytotoxic, genotoxic and DNA-protective effects of selected plant essential oils on human cells cultured in vitro. Neuro Endocrinology Letters, 27(Suppl 2), 44–47.
- Hotta, M., Nakata, R., Katsukawa, M., Hori, K., Takahashi, S., & Inoue, H. (2010). Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. Journal of Lipid Research, 51(1), 132–139. https://doi.org/10.1194/jlr.M900255-JLR200
- Jamali, C. A., Kasrati, A., Bekkouche, K., Hassani, L., Wohlmuth, H., Leach, D., & Abbad, A. (2013). Phenological changes to the chemical composition and biological activity of the essential oil from Moroccan endemic thyme (Thymus maroccanus Ball). Industrial Crops and Products, 49, 366–372. https://doi.org/10.1016/j.indcrop.2013.05.016
- Jung, C. Y., Kim, S. Y., & Lee, C. (2018). Carvacrol targets AXL to inhibit cell proliferation and migration in non-small cell lung cancer cells. Anticancer Research, 38(1), 279–286. https://doi.org/10.21873/anticanres.12219
- Karkabounas, S., Kostoula, O. K., Daskalou, T., Veltsistas, P., Karamouzis, M., Zelovitis, I., Metsios, A., Lekkas, P., Evangelou, A. M., Kotsis, N., & Skoufos, I. (2006). Anticarcinogenic and antiplatelet effects of carvacrol. Experimental Oncology, 28(2), 121–125.
- Kesarwani, K., Gupta, R., & Mukerjee, A. (2013). Bioavailability enhancers of herbal origin: An overview. Asian Pacific Journal of Tropical Biomedicine, 3(4), 253–266. https://doi.org/10.1016/S2221-1691(13)60060-X
- Khan, I., Bahuguna, A., Kumar, P., Bajpai, V. K., & Kang, S. C. (2018). In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Scientific Reports, 8(1), 144. https://doi.org/10.1038/s41598-017-18644-9
- Koparal, A. T., & Zeytinoglu, M. (2003). Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotechnology, 43(1), 149–154. https://doi.org/10.1023/B:CYTO.0000039917.60348.45
- Kubeček, O., Laco, J., Špaček, J., Petera, J., Kopecký, J., Kubečková, A., & Filip, S. (2017). The pathogenesis, diagnosis, and management of metastatic tumors to the ovary: A comprehensive review. Clinical & Experimental Metastasis, 34(5), 295–307. https://doi.org/10.1007/s10585-017-9856-8
- Li, H., Zhang, Y., Cao, L., Xiong, R., Zhang, B., Wu, L., Zhao, Z., & Chen, S. D. (2014). Curcumin could reduce the monomer of TTR with Tyr114Cys mutation via autophagy in cell model of familial amyloid polyneuropathy. Drug Design, Development and Therapy, 8, 2121–2128. https://doi.org/10.2147/DDDT.S70866
- Li, Z., Wang, Y., Qiu, J., Li, Q., Yuan, C., Zhang, W., Wang, D., Ye, J., Jiang, H., Yang, J., & Cheng, J. (2013). The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer. Oncotarget, 4(12), 2532–2549. https://doi.org/10.18632/oncotarget.1503
- Liang, W. Z., & Lu, C. H. (2012). Carvacrol-induced [Ca2+] i rise and apoptosis in human glioblastoma cells. Life Sciences, 90(17–18), 703–711. https://doi.org/10.1016/j.lfs.2012.03.027
- Llana-Ruiz-Cabello, M., Gutiérrez-Praena, D., Puerto, M., Pichardo, S., Jos, Á., & Cameán, A. M. (2015). In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 29(4), 647–656. https://doi.org/10.1016/j.tiv.2015.02.006
- Ma, X., & Yu, H. (2006). Global burden of cancer. The Yale Journal of Biology and Medicine, 79(3–4), 85–94.
- Maji, S., Samal, S. K., Pattanaik, L., Panda, S., Quinn, B. A., Das, S. K., Sarkar, D., Pellecchia, M., Fisher, P. B., & Dash, R. (2015). Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 6(18), 16623–16637. https://doi.org/10.18632/oncotarget.3932
- Man, A., Santacroce, L., Jacob, R., Mare, A., & Man, Lidia (2019). Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens, 8(1), 15. https://doi.org/10.3390/pathogens8010015
- Metelmann, H. R., Hyckel, P., & Podmelle, F. (2012). Oral cancer treatment and immune targets—a role for dendritic cells? Journal of cranio-maxillo-facial Surgery: Official Publication of the European Association for Cranio-Maxillo-Facial Surgery, 40(2), 103–104. https://doi.org/10.1016/j.jcms.2011.03.009
- Mohammadinejad, R., Ahmadi, Z., Tavakol, S., & Ashrafizadeh, M. (2019). Berberine as a potential autophagy modulator. Journal of Cellular Physiology, 234(9), 14914–14926. https://doi.org/10.1002/jcp.28325
- Mohammadinejad, R., Moosavi, M. A., Tavakol, S., Vardar, D. Ö., Hosseini, A., Rahmati, M., & Klionsky, D. J. (2019). Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 15(1), 4–33. https://doi.org/10.1080/15548627.2018.1509171
- Moon, U. R., Sen, S. K., & Mitra, A. (2014). Antioxidant capacities and acetylcholinesterase-inhibitory activity of Hoppea fastigiata. Journal of Herbs, Spices & Medicinal Plants, 20(2), 115–123.
10.1080/10496475.2013.840711 Google Scholar
- Nagai, H., & Kim, Y. H. (2017). Cancer prevention from the perspective of global cancer burden patterns. Journal of Thoracic Disease, 9(3), 448–451. https://doi.org/10.21037/jtd.2017.02.75
- Norman, R. A. (Ed.). (2020). Geriatric dermatology. CRC Press.
10.1201/9781003076544 Google Scholar
- Nurgali, K., Jagoe, R. T., & Abalo, R. (2018). Editorial: adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Frontiers in Pharmacology, 9, 245. https://doi.org/10.3389/fphar.2018.00245
- Ozkan, A., & Erdogan, A. (2012). A comparative study of the antioxidant/prooxidant effects of carvacrol and thymol at various concentrations on membrane and DNA of parental and drug resistant H1299 cells. Natural Product Communications, 7(12), 1557–1560. https://doi.org/10.1177/1934578X1200701201
- Paduch, R., Trytek, M., Król, S. K., Kud, J., Frant, M., Kandefer-Szerszeń, M., & Fiedurek, J. (2016). Biological activity of terpene compounds produced by biotechnological methods. Pharmaceutical Biology, 54(6), 1096–1107. https://doi.org/10.3109/13880209.2015.1103753
- Parnas, M., Peters, M., Dadon, D., Lev, S., Vertkin, I., Slutsky, I., & Minke, B. (2009). Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium, 45(3), 300–309. https://doi.org/10.1016/j.ceca.2008.11.009
- Pina-Vaz, C., Gonçalves Rodrigues, A., Pinto, E., Costa-de-Oliveira, S., Tavares, C., Salgueiro, L., & Martinez-de-Oliveira, J. (2004). Antifungal activity of thymus oils and their major compounds. Journal of the European Academy of Dermatology and Venereology, 18(1), 73–78. https://doi.org/10.1111/j.1468-3083.2004.00886.x
- Pisani, P., Airoldi, M., Allais, A., Aluffi Valletti, P., Battista, M., Benazzo, M., Briatore, R., Cacciola, S., Cocuzza, S., Colombo, A., Conti, B., Costanzo, A., Della Vecchia, L., Denaro, N., Fantozzi, C., Galizia, D., Garzaro, M., Genta, I., Iasi, G. A., Krengli, M., … Zigliani, A. (2020). Metastatic disease in head & neck oncology. Acta Otorhinolaryngologica Italica: Organo Ufficiale Della Societa Italiana Di Otorinolaringologia E Chirurgia cervico-facciale, 40(SUPPL. 1), S1–S86. https://doi.org/10.14639/0392-100X-suppl.1-40-2020
- Potočnjak, I., Gobin, I., & Domitrović, R. (2018). Carvacrol induces cytotoxicity in human cervical cancer cells but causes cisplatin resistance: Involvement of MEK-ERK activation. Phytotherapy Research: PTR, 32(6), 1090–1097. https://doi.org/10.1002/ptr.6048
- Rawla, P. (2019). Epidemiology of prostate cancer. World Journal of Oncology, 10(2), 63–89. https://doi.org/10.14740/wjon1191
- Ren, J., Xu, Y., Huang, Q., Yang, J., Yang, M., Hu, K., & Wei, K. (2015). Chabamide induces cell cycle arrest and apoptosis by the Akt/MAPK pathway and inhibition of P-glycoprotein in K562/ADR cells. Anti-cancer Drugs, 26(5), 498–507. https://doi.org/10.1097/CAD.0000000000000209
- Sampaio, L. A., Pina, L., Serafini, M. R., Tavares, D., & Guimarães, A. G. (2021). Antitumor effects of carvacrol and thymol: A systematic review. Frontiers in Pharmacology, 12, 702487. https://doi.org/10.3389/fphar.2021.702487
- Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018
- Shen, Y., Lu, B., Zhang, S., & Ma, Z. J. (2014). Diterpenoid C of Radix Curcumae: An inhibitor of proliferation and inducer of apoptosis in human colon adenocarcinoma cells acting via inhibiting MAPK signaling pathway. Pharmaceutical Biology, 52(9), 1158–1165. https://doi.org/10.3109/13880209.2013.879907
- Shergalis, A., Bankhead, A. 3rd, Luesakul, U., Muangsin, N., & Neamati, N. (2018). Current challenges and opportunities in treating glioblastoma. Pharmacological Reviews, 70(3), 412–445. https://doi.org/10.1124/pr.117.014944
- Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., & Jemal, A. (2020). Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3), 145–164. https://doi.org/10.3322/caac.21601
- Singh, M., Prasad, C. P., Singh, T. D., & Kumar, L. (2018). Cancer research in India: Challenges & opportunities. The Indian Journal of Medical Research, 148(4), 362.
- Singh, S., Sharma, B., Kanwar, S. S., & Kumar, A. (2016). Lead phytochemicals for anticancer drug development. Frontiers in Plant Science, 7, 1667. https://doi.org/10.3389/fpls.2016.01667
- Sivaranjani, A., Sivagami, G., & Nalini, N. (2016). Chemopreventive effect of carvacrol on 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Journal of Cancer Research and Therapeutics, 12(2), 755–762. https://doi.org/10.4103/0973-1482.154925
- Slamenova, D., Kozics, K., Hunakova, L., Melusova, M., Navarova, J., & Horvathova, E. (2013). Comparison of biological processes induced in HepG2 cells by tert-butyl hydroperoxide (t-BHP) and hydroperoxide (H2O2): The influence of carvacrol. Mutation Research, 757(1), 15–22. https://doi.org/10.1016/j.mrgentox.2013.03.014
- Smith, R. A., Andrews, K. S., Brooks, D., Fedewa, S. A., Manassaram-Baptiste, D., Saslow, D., & Wender, R. C. (2018). Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA: A Cancer Journal for Clinicians, 68(4), 297–316. https://doi.org/10.3322/caac.21446
- Sobhani, B., Roomiani, S., Ahmadi, Z., & Ashrafizadeh, M. (2019). Histopathological analysis of testis: Effects of astaxanthin treatment against nicotine toxicity. Iranian Journal of Toxicology, 13(1), 41–44.
- Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. https://doi.org/10.1016/j.micpath.2019.103580
- Tavakol, S., Zare, S., Hoveizi, E., Tavakol, B., & Rezayat, S. M. (2019). The impact of the particle size of curcumin nanocarriers and the ethanol on beta_1-integrin overexpression in fibroblasts: A regenerative pharmaceutical approach in skin repair and anti-aging formulations. DARU Journal of Pharmaceutical Sciences, 27(1), 159–168. https://doi.org/10.1007/s40199-019-00258-3
- Teissedre, P. L., & Waterhouse, A. L. (2000). Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties. Journal of Agricultural and Food Chemistry, 48(9), 3801–3805. https://doi.org/10.1021/jf990921x
- Tiwari, R. K., Singh, S., Gupta, C. L., Pandey, P., Singh, V. K., Sayyed, U., Shekh, R., & Bajpai, P. (2021). Repolarization of glioblastoma macrophage cells using non-agonistic Dectin-1 ligand encapsulating TLR-9 agonist: Plausible role in regenerative medicine against brain tumor. The International Journal of Neuroscience, 131(6), 591–598. https://doi.org/10.1080/00207454.2020.1750393
- Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: A review. Comprehensive Reviews in Food Science and Food Safety, 12(1), 40–53. https://doi.org/10.1111/1541-4337.12006
- Undeğer, U., Başaran, A., Degen, G. H., & Başaran, N. (2009). Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 47(8), 2037–2043. https://doi.org/10.1016/j.fct.2009.05.020
- Upadhyay, R. P. (2012). An overview of the burden of non-communicable diseases in India. Iranian Journal of Public Health, 41(3), 1–8.
- Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768. https://doi.org/10.1038/nrc2499
- Wang, J., Liu, L., Qiu, H., Zhang, X., Guo, W., Chen, W., & Deng, W. (2013). Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells. PLoS One, 8(5), e63872. https://doi.org/10.1371/journal.pone.0063872
- Wang, Q., Gong, J., Huang, X., Yu, H., & Xue, F. (2009). In vitro evaluation of the activity of microencapsulated carvacrol against Escherichia coli with K88 pili. Journal of Applied Microbiology, 107(6), 1781–1788.
- Yadav, G. D., & Kamble, S. B. (2009). Synthesis of carvacrol by Friedel-Crafts alkylation of o-cresol with isopropanol using superacidic catalyst UDCaT-5. Journal of Chemical Technology & Biotechnology, 84(10), 1499–1508. https://doi.org/10.1002/jctb.2210
- Yin, Q. H., Yan, F. X., Zu, X. Y., Wu, Y. H., Wu, X. P., Liao, M. C., Deng, S. W., Yin, L. L., & Zhuang, Y. Z. (2012). Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology, 64(1), 43–51. https://doi.org/10.1007/s10616-011-9389-y
- Zhu, J., Zhou, Y., Wang, G. N., Tai, G., & Ye, X. S. (2014). Cell cycle arrest, apoptosis and autophagy induced by iminosugars on K562 cells. European Journal of Pharmacology, 731, 65–72. https://doi.org/10.1016/j.ejphar.2014.03.013
- Zotti, M., Colaianna, M., Morgese, M. G., Tucci, P., Schiavone, S., Avato, P., & Trabace, L. (2013). Carvacrol: From ancient flavoring to neuromodulatory agent. Molecules (Basel, Switzerland), 18(6), 6161–6172. https://doi.org/10.3390/molecules18066161