Potential nutraceuticals from the casein fraction of goat’s milk
Corresponding Author
Shruti Dhasmana
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
Correspondence
Shruti Dhasmana, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no-19, knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India.
Email: [email protected]
Search for more papers by this authorSanjita Das
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
Search for more papers by this authorShivani Shrivastava
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
Search for more papers by this authorCorresponding Author
Shruti Dhasmana
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
Correspondence
Shruti Dhasmana, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no-19, knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India.
Email: [email protected]
Search for more papers by this authorSanjita Das
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
Search for more papers by this authorShivani Shrivastava
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
Search for more papers by this authorAbstract
Goat is one of the major dairy and meat providers. In terms of structure, nutrient content, and medicinal properties, goat milk is somewhat different from other milk. The differences in composition are important in determining the technical suitability of goat milk and its products for health benefits. In recent years, there has been increasing attention to the identification and molecular composition of milk proteins and the interest in caprine milk. Casein, which accounts for almost 80% of all the proteins, is the most significant protein found in goat milk. It is a pioneer in the field of nutraceutical formulation and drug production by using the goat mammary gland as a bioreactor. In goat milk, the most prevalent proteins are αS-casein, β-casein, and κ-casein. The aim of this review is to highlight the importance of goat milk casein and also focus on recent findings on their medicinal importance that may be helpful for further research on dairy products with health beneficial properties for humans as a remarkable nutraceutical.
Practical applications
Goat milk casein is considered as a healthy nutrient as well as a therapeutic agent to control abnormal or disease conditions through some of its biologically active peptide residues. Casein fractions of goat milk have been shown to exhibit different biologic activities. Therefore, this study aims to observe the use of goat milk in various disorders and to know about the different products made from goat milk. It will be helpful in the field of medicine to be a new active constituent for the management of various disease conditions.
CONFLICT OF INTEREST
The author declares that there is no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Almeida, C. C., Alvares, T. S., Costa, M. P., & Conte-Junior, C. A. (2016). Protein and amino acid profiles of different whey protein supplements. Journal of Dietary Supplements, 13(3), 313–323. https://doi.org/10.3109/19390211.2015.1036187
- Alshamiry, F. A., & Abdelrahman, M. M. (2020). Milk protein, types and structure, synthesis of casein. ResearchGate, 2, 1–21. https://www.researchgate.net/publication/338984130_Review_Milk_protein_types_and_structure_synthesis_of_casein
- Amorim, F. G., Coitinho, L. B., Dias, A. T., Friques, A. G. F., Monteiro, B. L., de Rezende, L. C. D., Pereira, T. d. M. C., Campagnaro, B. P., De Pauw, E., Vasquez, E. C., & Quinton, L. (2019). Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chemistry, 282, 109–119. https://doi.org/10.1016/j.foodchem.2019.01.010
- Anderson, G. H., & Moore, S. E. (2004). Dietary proteins in the regulation of food intake and body weight in humans. The Journal of Nutrition, 134(4), 974S–979S. https://doi.org/10.1093/jn/134.4.974S
- Assifaoui, A., Huault, L., Maissiat, C., Roullier-Gall, C., Jeandet, P., Hirschinger, J., Raya, J., Jaber, M., Lambert, J.-F., Cayot, P., Gougeon, R. D., & Loupiac, C. (2014). Structural studies of adsorbed protein (betalactoglobulin) on natural clay (montmorillonite). RSC Advances, 4(105), 61096–61103. https://doi.org/10.1039/C4RA11607K
- Azfar, A., & Azhar, M. A. (2017). Development and evaluation of goat milk tablet using dry granulation techniques for nutraceutical purposes. International Journal of Engineering Technology and Sciences, 4(1), 8–14. https://doi.org/10.15282/ijets.7.2017.1.2.1064
10.15282/ijets.7.2017.1.2.1064 Google Scholar
- Azhar, M. A., & Salim, N. (2017). Isolation and molecular characterization of local goat milk casein for nutraceutical value. MATEC Web of Conferences, 97, 01084. https://doi.org/10.1051/matecconf/20179701084
10.1051/matecconf/20179701084 Google Scholar
- Ballabio, C., Chessa, S., Rignanese, D., Gigliotti, C., Pagnacco, G., Terracciano, L., Fiocchi, A., Restani, P., & Caroli, A. M. (2011). Goat milk allergenicity as a function of αS1-casein genetic polymorphism. Journal of Dairy Science, 94(2), 998–1004. https://doi.org/10.3168/jds.2010-3545
- Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., & Beaufrère, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14930–14935. https://doi.org/10.1073/pnas.94.26.14930
- Bounous, G., Stevenson, M. M., & Kongshavn, P. A. (1981). Influence of dietary lactalbumin hydrolysate on the immune system of mice and resistance to Salmonellosis. Journal of Infectious Diseases, 144(3), 281. https://doi.org/10.1093/infdis/144.3.281
- Cadée, J. A., Chang, C. Y., Chen, C. W., Huang, C. N., Chen, S. L., & Wang, C. K. (2007). Bovine casein hydrolysate (C12 peptide) reduces blood pressure in prehypertensive subjects. American Journal of Hypertension, 20(1), 1–5. https://doi.org/10.1016/j.amjhyper.2006.06.005
- Ceapa, C., Wopereis, H., Rezaïki, L., Kleerebezem, M., Knol, J., & Oozeer, R. (2013). Influence of fermented milk products, prebiotics and probiotics on microbiota composition and health. Best Practice & Research Clinical Gastroenterology, 27(1), 139–155. https://doi.org/10.1016/j.bpg.2013.04.004
- Chia, J. S. J., McRae, J. L., Kukuljan, S., Woodford, K., Elliott, R. B., Swinburn, B., & Dwyer, K. M. (2017). A1 beta-casein milk protein and other environmental pre-disposing factors for type 1 diabetes. Nutrition & Diabetes, 7(5), e274. https://doi.org/10.1038/nutd.2017.16
- Choi, J., Horne, D. S., & Lucey, J. A. (2011). Determination of molecular weight of a purified fraction of colloidal calcium phosphate derived from the casein micelles of bovine milk. Journal of Dairy Science, 94(7), 3250–3261. https://doi.org/10.3168/jds.2010-3762
- De Kruif, C. G., & Holt, C. (2003). Casein micelle structure, functions and interactions. In Advanced dairy chemistry—1 proteins (Vol. 1, pp. 233–276). Boston, MA: Springer. http://doi.org/10.1007/9781-4419-8602-3_5
10.1007/978-1-4419-8602-3_5 Google Scholar
- De Wolf, F. A. (2003). Chapter V Collagen and gelatin. In Progress in biotechnology (Vol. 23, pp. 133–218). Elsevier. https://doi.org/10.1016/S0921-0423(03)80005-9
- El-Sayed, M., & Awad, S. (2019). Milk bioactive peptides: Antioxidant, antimicrobial and anti-diabetic activities. Advances in Biochemistry, 7(1), 22. https://doi.org/10.11648/j.ab.20190701.15
- Eskin, N. M., & Shahidi, F. (2012). Milk. In Biochemistry of foods (pp. 187–214). Academic Press.
- Farrell Jr, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F., & Swaisgood, H. E. (2004). Nomenclature of the proteins of cows’ milk—Sixth revision. Journal of Dairy Science, 87(6), 1641–1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6
- Fatchiyah, F., Rohmah, R. N., Triprisila, L. F., Ohta, T., & Meidinna, H. N. (2020). The caprine casein-alpha-S2 protein modulates the molecular mechanism 2 of insulin signal transduction in Type2 diabetes rat. Acta Biochimica Polonica, 67(3), 401–408. https://doi.org/10.18388/abp.2020_5357
- Fenelon, M. A., Hickey, R. M., Buggy, A., McCarthy, N., & Murphy, E. G. (2019). Whey proteins in infant formula. In Whey proteins (pp. 439–494). Academic Press. https://doi.org/10.1016/B978-0-12-812124-5.00013-8
10.1016/B978-0-12-812124-5.00013-8 Google Scholar
- Gao, A., Dong, S., Chen, Y., Chen, G., Li, S., & Chen, Y. (2018). In vitro evaluation and physicochemical characteristics of casein phosphopeptides-soluble dietary fibers copolymers as a novel calcium delivery system. Food Hydrocolloids, 79, 482–490. https://doi.org/10.1016/j.foodhyd.2018.01.024
- Gupta, B. P., Siddique, A., Jones, O. A., & Park, Y. W. (2016). Cholesterol concentrations and lipolytic characteristics of commercial bovine and caprine milk yogurts during four weeks refrigerated storage. Journal of Advances in Dairy Research, 4(155), 2.
- Huppertz, T., Fox, P. F., & Kelly, A. L. (2018). The caseins: Structure, stability, and functionality. Proteins in food processing ( 2nd ed., pp. 49–92). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100722-8.00004-8
10.1016/B978-0-08-100722-8.00004-8 Google Scholar
- Ibrahim, H. R., Ahmed, A. S., & Miyata, T. (2017). Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. Journal of Advanced Research, 8(1), 63–71. https://doi.org/10.1016/j.jare.2016.12.002
- Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474(7351), 327–336. https://doi.org/10.1038/nature10213
- Kawasaki, K., Lafont, A. G., & Sire, J. Y. (2011). The evolution of milk casein genes from tooth genes before the origin of mammals. Molecular Biology and Evolution, 28(7), 2053–2061. https://doi.org/10.1093/molbev/msr020
- Khan, I. T., Nadeem, M., Imran, M., Ullah, R., Ajmal, M., & Jaspal, M. H. (2019). Antioxidant properties of milk and dairy products: A comprehensive review of the current knowledge. Lipids in Health and Disease, 18(1), 1–13. https://doi.org/10.1186/s12944-019-0969-8
- Kumar, A., Tripathi, S., Hans, N., Pattnaik, H. S. N., & Naik, S. N. (2018). Ghee: Its properties, importance and health benefits. https://www.researchgate.net/publication/339499398_Ghee_Its_Properties_Importance_and_Health_Benefits
- Kumar, H., Yadav, D., Kumar, N., Seth, R., & Goyal, A. K. (2016). Nutritional and nutraceutical properties of goat milk-a review. Indian Journal of Dairy Science, 69(5), 513–518. https://www.researchgate.net/publication/301693090_Nutritional_and_nutraceutical_properties_of_goat_milk_-_A_review
- Lepage, P., & Van de Perre, P. (2012). The immune system of breast milk: Antimicrobial and anti-inflammatory properties. In A. Kourtis & M. Bulterys (Eds.), Human immunodeficiency virus type 1 (HIV-1) and breastfeeding (Vol. 743, pp. 121–137). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-2251-8_9
10.1007/978-1-4614-2251-8_9 Google Scholar
- Li, M., O’Mahony, J. A., Kelly, A. L., & Brodkorb, A. (2020). The influence of temperature-and divalent-cation-mediated aggregation of β-casein on the physical and microstructural properties of β-casein-stabilised emulsions. Colloids and Surfaces B: Biointerfaces, 187, 110620. https://doi.org/10.1016/j.colsurfb.2019.110620
- Lund, A., & Ahmad, M. (2021). Production potential, nutritive value and nutraceutical effects of goat milk. Journal of Animal Health and Production, 9(1), 65–71. https://doi.org/10.17582/journal.jahp/2021/9.1.65.71
10.17582/journal.jahp/2021/9.1.65.71 Google Scholar
- Madureira, A. R., Pereira, C. I., Gomes, A. M., Pintado, M. E., & Malcata, F. X. (2007). Bovine whey proteins—Overview on their main biological properties. Food Research International, 40(10), 1197–1211. https://doi.org/10.1016/j.sjbs.2015.06.005
- McSweeney, P. L., Ottogalli, G., & Fox, P. F. (2017). Diversity and classification of cheese varieties: An overview. Cheese, 1(978-0-12-417012-4), 781–808. https://doi.org/10.1016/B978-0-12-417012-4.00031-4
10.1016/B978?0?12?417012?4.00031?4 Google Scholar
- Mittu, B., & Girdhar, Y. (2015). Role of lactic acid bacteria isolated from goat milk in cancer prevention. Autoimmune and Infectious Diseases, 1(2), 2470–1025. https://doi.org/10.16966/2470-1025.108
10.16966/2470?1025.108 Google Scholar
- Pal, M., Dudhrejiya, T. P., Pinto, S., Brahamani, D., Vijayageetha, V., Reddy, Y. K., Roy, P., Chhetri, A., Sarkar, S., & Kate, P. (2017). Goat milk products and their significance. Beverage & Food World, 44(7), 21–5. https://www.researchgate.net/profile/Mahendra-Pal-9/publication/318598392_Goat_Milk_Products_and_their_significance/links/5972366ba6fdcc83488162f0/Goat-Milk-Products-and-their-significance.pdf
- Park, Y. W., & Nam, M. S. (2015). Bioactive peptides in milk and dairy products: A review. Korean Journal for Food Science of Animal Resources, 35(6), 831–840. https://doi.org/10.5851/kosfa.2015.35.6.831
- Parmar, H., Hati, S., & Sakure, A. (2018). In vitro and in silico analysis of novel ACE-inhibitory bioactive peptides derived from fermented goat milk. International Journal of Peptide Research and Therapeutics, 24(3), 441–453. https://doi.org/10.1007/s10989-017-9630-4
- Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. International Dairy Journal, 16(11), 1306–1314. https://doi.org/10.1016/j.idairyj.2006.06.005
- Pistrosch, F., Natali, A., & Hanefeld, M. (2011). Is hyperglycemia a cardiovascular risk factor? Diabetes Care, 34(Suppl. 2), S128–S131. https://doi.org/10.2337/dc11-s207
- Ptiček Siročić, A., Kratofil Krehula, L., Katančić, Z., & Hrnjak-Murgić, Z. (2016). Characterization of casein fractions—Comparison of commercial casein and casein extracted from cow’s milk. Chemical and Biochemical Engineering Quarterly, 30(4), 501–509. https://doi.org/10.15255/CABEQ.2015.2311
- Rangel, A. H. N., Zaros, L. G., Lima, T. C., Borba, L. H. F., Novaes, L. P., Mota, L. F. M., & Silva, M. S. (2017). Polymorphism in the beta casein gene and analysis of milk characteristicsin Gir and Guzerá dairy cattle. Genetics and Molecular Research, 16(2), 1–9. https://doi.org/10.4238/gmr16029592
- Recio, I., & Visser, S. (1999). Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin: In situ enzymatic hydrolysis on an ion-exchange membrane. Journal of Chromatography A, 831(2), 191–201. https://doi.org/10.1016/S0021-9673(98)00950-9
- Rehan, F., Ahemad, N., & Gupta, M. (2019). Casein nanomicelle as an emerging biomaterial—A comprehensive review. Colloids and Surfaces B: Biointerfaces, 179, 280–292. https://doi.org/10.1016/j.colsurfb.2019.03.051
- Reyes-Díaz, A., González-Córdova, A. F., Hernández-Mendoza, A., Reyes-Díaz, R., & Vallejo-Cordoba, B. (2018). Immunomodulation by hydrolysates and peptides derived from milk proteins. International Journal of Dairy Technology, 71(1), 1–9. https://doi.org/10.1111/1471-0307.12421
- Robins, A., Radha, K., Sathian, C. T., Geetha, R., & Beena, A. K. (2019). Development of low-calorie goat milk ice cream by using stevia leaf powder. The Pharma Innovation Journal, 8(1), 296–299. https://www.thepharmajournal.com/archives/2019/vol8issue1/PartF/7-8-120-895.pdf
- Safdar, A., Azman, K. F., Zakaria, R., Ab Aziz, C. B., & Rashid, U. (2020). Memory-enhancing effects of goat milk in d-galactose-induced aging rat model. Biomedical Research and Therapy, 7(1), 3563–3571. https://doi.org/10.15419/bmrat.v7i1.583
- Sastrawidana, D. K., Pradnyana, G. A., & Madiarsa, M. (2019). Preparation and characterization of herbal shampoo from goat milk and natural extract. Journal of Physics: Conference Series, 1317, 012033. https://doi.org/10.1088/1742-6596/1317/1/012033
10.1088/1742?6596/1317/1/012033 Google Scholar
- Selvaggi, M., Laudadio, V., Dario, C., & Tufarelli, V. (2014). Major proteins in goat milk: An updated overview on genetic variability. Molecular Biology Reports, 41(2), 1035–1048. https://doi.org/10.1007/s11033-013-2949-9
- Shi, T. X., & Li, Y. (2021). Producing high Fischer ratio peptides from milk protein and its application in infant formula milk powder. Quality Assurance and Safety of Crops & Foods, 13(1), 49–58. https://doi.org/10.15586/qas.v13i1.808
- Silva, S. V., Pihlanto, A., & Malcata, F. X. (2006). Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus. Journal of Dairy Science, 89(9), 3336–3344. https://doi.org/10.3168/jds.S0022-0302(06)72370-0
- Yadav, A. K., Singh, J., & Yadav, S. K. (2016). Composition, nutritional and therapeutic values of goat milk: A review. Asian Journal of Dairy and Food Research, 35(2), 96–102. https://doi.org/10.18805/ajdfr.v35i2.10719
10.18805/ajdfr.v35i2.10719 Google Scholar
- Yahyaoui, M. H., Angiolillo, A., Pilla, F., Sanchez, A., & Folch, J. M. (2003). Characterization and genotyping of the caprine κ-casein variants. Journal of Dairy Science, 86(8), 2715–2720. https://doi.org/10.3168/jds.S0022-0302(03)73867-3
- Yangilar, F. (2013). As a potentially functional food: Goats’ milk and products. Journal of Food and Nutrition Research, 1(4), 68–81. https://doi.org/10.12691/jfnr-1-4-6
10.12691/jfnr?1?4?6 Google Scholar
- Yilmaz-Ersan, L., Ozcan, T., Akpinar-Bayizit, A., & Sahin, S. (2016). The antioxidative capacity of kefir produced from goat milk. International Journal of Chemical Engineering and Applications, 7(1), 22–26. https://doi.org/10.7763/IJCEA.2016.V7.535
- Zenebe, T., Ahmed, N., Kabeta, T., & Kebede, G. (2014). Review on medicinal and nutritional values of goat milk. Academic Journal of Nutrition, 3(3), 30–39. https://doi.org/10.5829/idosi.ajn.2014.3.3.93210
- Zhang, Y., Lima, C. F., & Rodrigues, L. R. (2014). Anticancer effects of lactoferrin: Underlying mechanisms and future trends in cancer therapy. Nutrition Reviews, 72(12), 763–773. https://doi.org/10.1111/nure.12155