Role of fermented goat milk as a nutritional product to improve anemia
Hamed Mirzaei
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
Search for more papers by this authorCorresponding Author
Reza Sharafati Chaleshtori
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
Correspondence
Reza Sharafati Chaleshtori, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
Email: [email protected]
Search for more papers by this authorHamed Mirzaei
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
Search for more papers by this authorCorresponding Author
Reza Sharafati Chaleshtori
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
Correspondence
Reza Sharafati Chaleshtori, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
Email: [email protected]
Search for more papers by this authorAbstract
Goat milk, like cow milk, needs some modifications to be used as the sole source of nutrition during early infancy. For goat milk to be more like human milk and more nutritionally complete, sugar, vitamins and minerals need to be added to it and for reduction of renal solute load, it needs to be diluted. To prevent megaloblastic anemia in infants fed exclusively on goat milk, folic acid should be supplied either by adding it to goat milk or by an oral folic acid supplement. In fortification of milk products, thermal processing, fermentation, and species differences in milk folate bioavailability are three additional factors that should be considered besides absolute difference in folate concentration between goat and human milk. Whether different feeding regimes (e.g., iron and folate content of diets) influence milk folate content needs to be elucidated by more research. Our findings showed that fermented goat milk during anemia recovery can be improve antioxidant status, protection from oxidative damage to biomolecules, protective effects on testis, improve Fe and skeletal muscle homeostasis as well as improve cardiovascular health.
Practical applications
To be used as part of a postweaning nutritionally well-balanced diet, fermented goat milk is most likely an excellent source of nutrition for the human.
CONFLICTS OF INTEREST
The authors have declared no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.
REFERENCES
- Abu-Ouf, N. M., & Jan, M. M. (2015). The impact of maternal iron deficiency and iron deficiency anemia on child's health. Saudi Medical Journal, 36(2), 146–149. https://doi.org/10.15537/smj.2015.2.10289
- Aksu, E. H., Kandemir, F. M., Özkaraca, M., Ömür, A. D., Küçükler, S., & Çomakl, S. (2017). Rutin ameliorates cisplatin-induced reproductive damage via suppression of oxidative stress and apoptosis in adult male rats. Andrologia, 49(1), e12593. https://doi.org/10.1111/and.12593
- Alférez, M. J., Lopez-Aliaga, I., Nestares, T., Díaz-Castro, J., Barrionuevo, M., Ros, P. B., & Campos, M. S. (2006). Dietary goat milk improves iron bioavailability in rats with induced ferropenic anaemia in comparison with cow milk. International Dairy Journal, 16(7), 813–821. https://doi.org/10.1016/j.idairyj.2005.08.001
- Al-Helaly, L. A., Rashed, S. H., & Bdaiwi, L. F. (2013). A comparative study of oxidant and antioxidant levels between human milk with other types of ruminant animals. Iraqi National Journal of Chemistry, 49, 86–89.
- Alichanidis, E., Moatsou, G., & Polychroniadou, A. (2016). Composition and properties of non-cow milk and products. In E. Tsakalidou, & K. Papadimitriou (Eds.), Non-bovine milk and milk products (pp. 81–116). Elsevier Science.
10.1016/B978-0-12-803361-6.00005-3 Google Scholar
- Aureli, P., Capurso, L., Castellazzi, A. M., Clerici, M., Giovannini, M., Morelli, L., Poli, A., Pregliasco, F., Salvini, F., & Zuccotti, G. V. (2011). Probiotics and health: An evidence-based review. Pharmacological Research, 63(5), 366–376. https://doi.org/10.1016/j.phrs.2011.02.006
- Balthazar, C. F., Silva, H. L. A., Esmerino, E. A., Rocha, R. S., Moraes, J., Carmo, M. A. V., Azevedo, L., Camps, I., K.D Abud, Y., Sant'Anna, C., Franco, R. M., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Escher, G. B., Granato, D., Senaka Ranadheera, C., Nazarro, F., & Cruz, A. G. (2018). The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chemistry, 246, 464–472. https://doi.org/10.1016/j.foodchem.2017.12.002
- Banala, R. R., & Karnati, P. R. (2015). Vitamin A deficiency: An oxidative stress marker in sodium fluoride (NaF) induced oxidative damage in developing rat brain. International Journal of Developmental Neuroscience, 47, 298–303. https://doi.org/10.1016/j.ijdevneu.2015.08.010
- Bertuzzi, A. S., Kilcawley, K. N., Sheehan, J. J., O'Sullivan, M. G., Kennedy, D., McSweeney, P. L., & Rea, M. C. (2017). Use of smear bacteria and yeasts to modify flavour and appearance of Cheddar cheese. International Dairy Journal, 72, 44–54. https://doi.org/10.1016/j.idairyj.2017.04.001
- Biadała, A., & Konieczny, P. (2018). Goat’s milk-derived bioactive components – A review. Mljekarstvo, 68(4), 239–253. (in Croatian).
- Bomhard, E. M., Cohen, S. M., Gelbke, H. P., & Williams, G. M. (2012). Evaluation of the male reproductive toxicity of gallium arsenide. Regulatory Toxicology and Pharmacology, 64(1), 77–86. https://doi.org/10.1016/j.yrtph.2012.06.005
- Castillo-Quan, J. I. (2012). From white to brown fat through the PGC-1α-dependent myokine irisin: Implications for diabetes and obesity. Disease Models & Mechanisms, 5(3), 293–295. https://doi.org/10.1242/dmm.009894
- Castro, T., Manso, T., Jimeno, V., Del Alamo, M., & Mantecón, A. R. (2009). Effects of dietary sources of vegetable fats on performance of dairy ewes and conjugated linoleic acid (CLA) in milk. Small Ruminant Research, 84(1–3), 47–53. https://doi.org/10.1016/j.smallrumres.2009.05.005
- Cerami, C. (2017). Iron nutriture of the fetus, neonate, infant, and child. Annals of Nutrition and Metabolism, 71(Suppl. 3), 8–14. https://doi.org/10.1159/000481447
- Chaparro, C. M., & Suchdev, P. S. (2019). Anemia epidemiology, pathophysiology, and etiology in low-and middle-income countries. Annals of the New York Academy of Sciences, 1450(1), 15–31. https://doi.org/10.1111/nyas.14092
- Ciftci, M., Bilici, D., & Kufrevioglu, O. I. (2001). Effects of melatonin on enzyme activities of glucose-6-phosphate dehydrogenase from human erythrocytes in vitro and from rat erythrocytes in vivo. Pharmacological Research, 44(1), 7–11. https://doi.org/10.1006/phrs.2001.0837
- Ciolkowska, A., Koziol, J., & Gustaw, W. (2012). Sprzężony kwas linolowy (CLA)-biaktywny składnik tłuszczu mlekowego. Przegląd Mleczarski, 8, 10–15. (in Polish).
- Das, U. N. (2010). Obesity: Genes, brain, gut, and environment. Nutrition, 26(5), 459–473. https://doi.org/10.1016/j.nut.2009.09.020
- de Almada, C. N., Nunes de Almada, C., Martinez, R. C., & Sant'Ana Ade, S. (2015). Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Applied Microbiology and Biotechnology, 99(10), 4175–4199. https://doi.org/10.1007/s00253-015-6582-5
- Diaz-Castro, J., Moreno-Fernandez, J., Pulido-Moran, M., Alférez, M. J., Robles-Rebollo, M., Ochoa, J. J., & López-Aliaga, I. (2017). Changes in adiposity and body composition during anemia recovery with goat or cow fermented milks. Journal of Agricultural and Food Chemistry, 65(20), 4057–4065. https://doi.org/10.1021/acs.jafc.7b00666
- Díaz-Castro, J., Pérez-Sánchez, L. J., Ramírez López-Frías, M., López-Aliaga, I., Nestares, T., Alférez, M. J. M., Ojeda, M. L., & Campos, M. S. (2012). Influence of cow or goat milk consumption on antioxidant defence and lipid peroxidation during chronic iron repletion. British Journal of Nutrition, 108(1), 1–8. https://doi.org/10.1017/S0007114511005204
- Díaz-Castro, J., Ramírez López-Frías, M., Campos, M. S., López-Frías, M., Alférez, M., Nestares, T., Ortega, E., & López-Aliaga, I. (2011). Goat milk during iron repletion improves bone turnover impaired by severe iron deficiency. Journal of Dairy Science, 94(6), 2752–2761. https://doi.org/10.3168/jds.2010-4043
- Díaz-Castro, J., Sánchez-Alcover, A., Hijano, S., Alférez, M. J. M., Nestares, T., Moreno, M., Campos, M. S., & López-Aliaga, I. (2014). Goat milk supplemented with folic acid protects cell biomolecules from oxidative stress-mediated damage after anaemia recovery in comparison with cow milk. European Journal of Nutrition, 53(5), 1165–1175. https://doi.org/10.1007/s00394-013-0616-5
- Donovan, A., Lima, C. A., Pinkus, J. L., Pinkus, G. S., Zon, L. I., Robine, S., & Andrews, N. C. (2005). The iron exporter ferroprotein/Slc40a1 is essential for iron homeostasis. Cell Metabolism, 1(3), 191–200.
- Drosatos, K., & Schulze, P. C. (2014). Savings precede spending. Circulation, 130(20), 1775–1777. https://doi.org/10.1161/CIRCULATIONAHA.114.013048
- Dunn, L. L., Rahmanto, Y. S., & Richardson, D. R. (2007). Iron uptake and metabolism in the new millennium. Trends in Cell Biology, 17(2), 93–100. https://doi.org/10.1016/j.tcb.2006.12.003
- Farvid, M. S., Ding, M., Pan, A. N., Sun, Q. I., Chiuve, S. E., Steffen, L. M., Willett, W. C., & Hu, F. B. (2014). Dietary linoleic acid and risk of coronary heart disease: A systematic review and meta-analysis of prospective cohort studies. Circulation, 130(18), 1568–1578. https://doi.org/10.1161/CIRCULATIONAHA.114.010236
- Frazer, D. M., Wilkins, S. J., Becker, E. M., Vulpe, C. D., McKie, A. T., Trinder, D., & Anderson, G. J. (2002). Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology, 123(3), 835–844. https://doi.org/10.1053/gast.2002.35353
- Gámbaro, A., González, V., Jiménez, S., Arechavaleta, A., Irigaray, B., Callejas, N., Grompone, M., & Vieitez, I. (2017). Chemical and sensory profiles of commercial goat cheeses. International Dairy Journal, 69, 1–8. https://doi.org/10.1016/j.idairyj.2017.01.009
- Garzon, S., Cacciato, P. M., Certelli, C., Salvaggio, C., Magliarditi, M., & Rizzo, G. (2020). Iron deficiency anemia in pregnancy: Novel approaches for an old problem. Oman Medical Journal, 35(5), e166. https://doi.org/10.5001/omj.2020.108
- Hadjimbei, E., Botsaris, G., Goulas, V., Alexandri, E., Gekas, V., & Gerothanassis, I. P. (2020). Functional stability of goats' milk yoghurt supplemented with Pistacia atlantica resin extracts and Saccharomyces boulardii. International Journal of Dairy Technology, 73(1), 134–143.
- Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66
- Hindlet, P., Bado, A., Farinotti, R., & Buyse, M. (2007). Long-term effect of leptin on H+-coupled peptide cotransporter 1 activity and expression in vivo: Evidence in leptin-deficient mice. Journal of Pharmacology and Experimental Therapeutics, 323(1), 192–201.
- Hodgkinson, A. J., Wallace, O. A., Boggs, I., Broadhurst, M., & Prosser, C. G. (2018). Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chemistry, 245, 275–281. https://doi.org/10.1016/j.foodchem.2017.10.028
- Kapadiya, D. B., Prajapati, D. B., Jain, A. K., Mehta, B. M., Darji, V. B., & Aparnathi, K. D. (2016). Comparison of Surti goat milk with cow and buffalo milk for gross composition, nitrogen distribution, and selected minerals content. Veterinary World, 9(7), 710. https://doi.org/10.14202/vetworld.2016.710-716
- Karel, M., Tannenbaum, S. R., Wallace, D. H., & Maloney, H. (1996). Autoxidation of methyl linoleate in freeze-dried model systems. III. Effects of added amino acids. Journal of Food Science, 31(6), 892–896.
- Katz, O., Reifen, R., & Lerner, A. (2015). β-Carotene can reverse dysregulation of iron protein in an in vitro model of inflammation. Immunologic Research, 61(1–2), 70–78. https://doi.org/10.1007/s12026-014-8570-8
- Kirjavainen, P. V., Salminen, S. J., & Isolauri, E. (2003). Probiotic bacteria in the management of atopic disease: Underscoring the importance of viability. Journal of Pediatric Gastroenterology and Nutrition, 36(2), 223–227. https://doi.org/10.1097/00005176-200302000-00012
- Kullisaar, T., Songisepp, E., Mikelsaar, M., Zilmer, K., Vihalemm, T., & Zilmer, M. (2003). Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. British Journal of Nutrition, 90(2), 449–456. https://doi.org/10.1079/BJN2003896
- Li, Y. Q., Cao, X. X., Bai, B., Zhang, J. N., Wang, M. Q., & Zhang, Y. H. (2014). Severe iron deficiency is associated with a reduced conception rate in female rats. Gynecologic and Obstetric Investigation, 77(1), 19–23. https://doi.org/10.1159/000355112
- Lindsey, M. L., Yabluchanskiy, A., & Ma, Y. (2015). Tissue inhibitor of metalloproteinase-1: Actions beyond matrix metalloproteinase inhibition. Cardiology, 132(3), 147–150. https://doi.org/10.1159/000433419
- López-Aliaga, I., García-Pedro, J. D., Moreno-Fernandez, J., Alférez, M. J. M., López-Frías, M., & Díaz-Castro, J. (2018). Fermented goat milk consumption improves iron status and evokes inflammatory signalling during anemia recovery. Food & Function, 9(6), 3195–3201. https://doi.org/10.1039/C8FO00552D
- Mackenzie, B., & Garrick, M. D. (2005). Iron Imports. II. Iron uptake at the apical membrane in the intestine. American Journal of Physiology-Gastrointestinal and Liver. Physiology, 289(6), 981–986.
- Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/j.copbio.2016.11.010
- McKie, A. T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T. J., Farzaneh, F., Hediger, M. A., Hentze, M. W., & Simpson, R. J. (2000). A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Molecular Cell, 5(2), 299–309. https://doi.org/10.1016/S1097-2765(00)80425-6
- Melenovsky, V., Petrak, J., Mracek, T., Benes, J., Borlaug, B. A., Nuskova, H., Pluhacek, T., Spatenka, J., Kovalcikova, J., Drahota, Z., Kautzner, J., Pirk, J., & Houstek, J. (2017). Myocardial iron content and mitochondrial function in human heart failure: A direct tissue analysis. European Journal of Heart Failure, 19(4), 522–530. https://doi.org/10.1002/ejhf.640
- Minieri, S., Francesco, S., Mannelli, F., Gatta, D., Doria, B., & Buccioni, A. (2018). New trends in the bioactive compounds of milk: A review of the functional activities and processing effects. SDRP Journal of Food Science & Technology, 3(4), 378–388.
10.25177/JFST.3.4.1 Google Scholar
- Mituniewicz-Małek, A., Zielińska, D., & Ziarno, M. (2019). Probiotic monocultures in fermented goat milk beverages–sensory quality of final product. International Journal of Dairy Technology, 72(2), 240–247. https://doi.org/10.1111/1471-0307.12576
- Moreno-Fernandez, J., Alférez, M. J., López-Aliaga, I., & Diaz-Castro, J. (2019). Protective effects of fermented goat milk on genomic stability, oxidative stress and inflammatory signalling in testis during anaemia recovery. Scientific Reports, 9(1), 6881.
- Moreno-Fernandez, J., Alférez, M. J., López-Aliaga, I., & Díaz-Castro, J. (2020). Role of fermented goat milk on liver gene and protein profiles related to iron metabolism during anemia recovery. Nutrients, 12(5), 1336. https://doi.org/10.3390/nu12051336
- Moreno-Fernandez, J., Diaz-Castro, J., Alférez, M. J., Boesch, C., Nestares, T., & López-Aliaga, I. (2017). Fermented goat milk improves antioxidant status and protects from oxidative damage to biomolecules during anemia recovery. Journal of the Science of Food and Agriculture, 97(5), 1433–1442. https://doi.org/10.1002/jsfa.7882
- Moreno-Fernández, J., Díaz-Castro, J., Alférez, M. J., Hijano, S., Nestares, T., & López-Aliaga, I. (2016). Production and chemical composition of two dehydrated fermented dairy products based on cow or goat milk. The Journal of Dairy Research, 83(1), 81. https://doi.org/10.1017/S0022029915000722
- Moreno-Fernandez, J., Diaz-Castro, J., Alférez, M. J., Nestares, T., Ochoa, J. J., Sánchez-Alcover, A., & López-Aliaga, I. (2016). Fermented goat milk consumption improves melatonin levels and influences positively the antioxidant status during nutritional ferropenic anemia recovery. Food & Function, 7(2), 834–842. https://doi.org/10.1039/C5FO01299F
- Moreno-Fernandez, J., Diaz-Castro, J., Pulido-Moran, M., Alferez, M. J., Boesch, C., Sanchez-Alcover, A., & López-Aliaga, I. (2016). Fermented goat’s milk consumption improves duodenal expression of iron homeostasis genes during anemia recovery. Journal of Agricultural and Food Chemistry, 64(12), 2560–2568. https://doi.org/10.1021/acs.jafc.6b00108
- Moreno-Fernandez, J., Diaz-Castro, J., Pulido-Moran, M., Alferez, M. J., Nestares, T., & Lopez-Aliaga, I. (2017). Fermented goat milk consumption during anaemia recovery: Ergogenic effect and improvement of skeletal muscle homeostasis. European Journal of Nutrition, 56(7), 2277–2287. https://doi.org/10.1007/s00394-016-1268-z
- Moreno-Fernández, J., López-Aliaga, I., García-Burgos, M., Alférez, M. J. M., & Díaz-Castro, J. (2019). Fermented goat milk consumption enhances brain molecular functions during Iron deficiency anemia recovery. Nutrients, 11(10), 2394. https://doi.org/10.3390/nu11102394
- Muñoz Alférez, M. J., Muñoz-García, A., Moreno-Fernández, J., López-Aliaga, I., & Díaz-Castro, J. (2019). Fermented goat milk consumption improves cardiovascular health during anemia recovery. Journal of the Science of Food and Agriculture, 99(1), 473–481. https://doi.org/10.1002/jsfa.9210
- O’Toole, P. W., Marchesi, J. R., & Hill, C. (2017). Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2(5), 1–6. https://doi.org/10.1038/nmicrobiol.2017.57
- Pawlak, R., Berger, J., & Hines, I. (2016). Iron status of vegetarian adults: A review of literature. American Journal of Lifestyle Medicine, 12(6), 486–498. https://doi.org/10.1177/1559827616682933
- Pereira, R. N., Teixeira, J. A., Vicente, A. A., Cappato, L. P., da Silva Ferreira, M. V., da Silva Rocha, R., & da Cruz, A. G. (2018). Ohmic heating for the dairy industry: A potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Current Opinion in Food Science, 22, 95–101. https://doi.org/10.1016/j.cofs.2018.01.014
- Pescuma, M., Hébert, E. M., Mozzi, F., & De Valdez, G. F. (2010). Functional fermented whey-based beverage using lactic acid bacteria. International Journal of Food Microbiology, 141(1–2), 73–81. https://doi.org/10.1016/j.ijfoodmicro.2010.04.011
- Pigeon, C., Ilyin, G., Courselaud, B., Leroyer, P., Turlin, B., Brissot, P., & Loréal, O. (2001). A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. Journal of Biological Chemistry, 276(11), 7811–7819. https://doi.org/10.1074/jbc.M008923200
- Póti, P., Pajor, F., Bodnár, Á., Penksza, K., & Köles, P. (2015). Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Chilean Journal of Agricultural Research, 75(2), 259–263. https://doi.org/10.4067/S0718-58392015000200017
- Prandini, A., Sigolo, S., & Piva, G. (2011). A comparative study of fatty acid composition and CLA concentration in commercial cheeses. Journal of Food Composition and Analysis, 24(1), 55–61. https://doi.org/10.1016/j.jfca.2010.04.004
- Przybojewska, B., & Rafalski, H. (2003). Fatty acids in milk and human health [part 4]. Cis and trans vaccenic acid. The Dairy Review, 9, 343–346.
- Pulina, G., Milán, M. J., Lavín, M. P., Theodoridis, A., Morin, E., Capote, J., Thomas, D. L., Francesconi, A., & Caja, G. (2018). Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. Journal of Dairy Science, 101(8), 6715–6729. https://doi.org/10.3168/jds.2017-14015
- Rafiq, S., Huma, N., Pasha, I., Sameen, A., Mukhtar, O., & Khan, M. I. (2016). Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. Asian-Australasian Journal of Animal Sciences, 29(7), 1022. https://doi.org/10.5713/ajas.15.0452
- Ranadheera, C. S., Evans, C. A., Baines, S. K., Balthazar, C. F., Cruz, A. G., Esmerino, E. A., Freitas, M. Q., Pimentel, T. C., Wittwer, A. E., Naumovski, N., Graça, J. S., Sant'Ana, A. S., Ajlouni, S., & Vasiljevic, T. (2019). Probiotics in goat milk products: Delivery capacity and ability to improve sensory attributes. Comprehensive Reviews in Food Science and Food Safety, 18(4), 867–882. https://doi.org/10.1111/1541-4337.12447
- Ranadheera, C. S., Naumovski, N., & Ajlouni, S. (2018). Non-bovine milk products as emerging probiotic carriers, recent developments and innovations. Current Opinion in Food Science, 22, 109–114. https://doi.org/10.1016/j.cofs.2018.02.010
- Reddy, P. S., Rani, G. P., Sainath, S. B., Meena, R., & Supriya, C. H. (2011). Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. Journal of Trace Elements in Medicine and Biology, 25(4), 247–253. https://doi.org/10.1016/j.jtemb.2011.08.145
- Ren, D. X., Zou, C. X., Lin, B., Chen, Y. L., Liang, X. W., & Liu, J. X. (2015). A comparison of milk protein, amino acid and fatty acid profiles of river buffalo and their F1 and F2 hybrids with swamp buffalo in China. Pakistan Journal of Zoology, 47(5), 1459–1465.
- Reyes, J. G., Farias, J. G., Henríquez-Olavarrieta, S., Madrid, E., Parraga, M., Zepeda, A. B., & Moreno, R. D. (2012). The hypoxic testicle: Physiology and pathophysiology. Oxidative Medicine and Cellular Longevity, 2012, 929285. https://doi.org/10.1155/2012/929285
- Salem, E. A., Salem, N. A., Maarouf, A. M., Serefoglu, E. C., & Hellstrom, W. J. (2012). Selenium and lycopene attenuate cisplatin-induced testicular toxicity associated with oxidative stress in Wistar rats. Urology, 79(5), 1184.e1–1184.e6. https://doi.org/10.1016/j.urology.2011.12.006
- Salva, S., Nuñez, M., Villena, J., Ramón, A., Font, G., & Alvarez, S. (2011). Development of a fermented goats' milk containing Lactobacillus rhamnosus: In vivo study of health benefits. Journal of the Science of Food and Agriculture, 91(13), 2355–2362.
- Sardar, S., Chakraborty, A., & Chatterjee, M. (1996). Comparative effectiveness of vitamin D3 and dietary vitamin E on peroxidation of lipids and enzymes of the hepatic antioxidant system in Sprague-Dawley rats. International Journal for Vitamin and Nutrition Research, 66(1), 39–45.
- Schwartz, S., Farriol, M., Garcia-Arumi, E., Andreu, A. L., Hellín, J. L., & Arbos, M. A. (1994). Effect of medium chain triglycerides (MCT) on jejunal mucosa mass and protein synthesis. Gut, 35(1 Suppl), S39–S41. https://doi.org/10.1136/gut.35.1_Suppl.S39
- Slačanac, V., Božanić, R., Hardi, J., Rezessyné Szabó, J. U., Lučan, M., & Krstanović, V. (2010). Nutritional and therapeutic value of fermented caprine milk. International Journal of Dairy Technology, 63(2), 171–189. https://doi.org/10.1111/j.1471-0307.2010.00575.x
- Songisepp, E., Kals, J., Kullisaar, T., Mändar, R., Hütt, P., Zilmer, M., & Mikelsaar, M. (2005). Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutrition Journal, 4(1), 1–10. https://doi.org/10.1186/1475-2891-4-22
- Szumacher-Strabel, M., Cieślak, A., Zmora, P., Pers-Kamczyc, E., Bielińska, S., Stanisz, M., & Wójtowski, J. (2011). Camelina sativa cake improved unsaturated fatty acids in ewe's milk. Journal of the Science of Food and Agriculture, 91(11), 2031–2037.
- Thomas, L. V. (2016). Probiotics–the journey continues. International Journal of Dairy Technology, 69(4), 469–480. https://doi.org/10.1111/1471-0307.12354
- Tian, H., Shen, Y., Yu, H., He, Y., & Chen, C. (2017). Effects of 4 probiotic strains in coculture with traditional starters on the flavor profile of yogurt. Journal of Food Science, 82(7), 1693–1701. https://doi.org/10.1111/1750-3841.13779
- Tsorotioti, S. E., Nasopoulou, C., Detopoulou, M., Sioriki, E., Demopoulos, C. A., & Zabetakis, I. (2014). In vitro anti-atherogenic properties of traditional Greek cheese lipid fractions. Dairy Science & Technology, 94(3), 269–281. https://doi.org/10.1007/s13594-014-0161-x
- Vieitez, I., Irigaray, B., Callejas, N., González, V., Gimenez, S., Arechavaleta, A., Grompone, M., & Gámbaro, A. (2016). Composition of fatty acids and triglycerides in goat cheeses and study of the triglyceride composition of goat milk and cow milk blends. Journal of Food Composition and Analysis, 48, 95–101. https://doi.org/10.1016/j.jfca.2016.02.010
- Vijgen, G. H., Bouvy, N. D., Teule, G. J., Brans, B., Schrauwen, P., & van Marken Lichtenbelt, W. D. (2011). Brown adipose tissue in morbidly obese subjects. PLoS One, 6(2), e17247. https://doi.org/10.1371/journal.pone.0017247
- Vosselman, M. J., Hoeks, J., Brans, B., Pallubinsky, H., Nascimento, E. B. M., van der Lans, A. A. J. J., Broeders, E. P. M., Mottaghy, F. M., Schrauwen, P., & van Marken Lichtenbelt, W. D. (2015). Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. International Journal of Obesity, 39(12), 1696–1702. https://doi.org/10.1038/ijo.2015.130
- Wang, M. (2016). Iron deficiency and other types of anemia in infants and children. American Family Physician, 93(4), 270–278.
- Ziarno, M., & Truszkowska, K. (2005). Wlasciwosci mleka koziego I jego przetworow. Przegląd Mleczarski, 03, 4–8.