Impact of Thymus vulgaris extract on sodium nitrite-induced alteration of renal redox and oxidative stress: Biochemical, molecular, and immunohistochemical study
Corresponding Author
Mohamed Mohamed Soliman
Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
Correspondence
Mohamed Mohamed Soliman, Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
Email: [email protected]
Contribution: Writing - original draft
Search for more papers by this authorAdel Aldhahrani
Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
Contribution: Writing - original draft
Search for more papers by this authorYousef Saeed Alghamdi
Biology Department, Turabah University College, Taif University, Taif, Saudi Arabia
Contribution: Visualization
Search for more papers by this authorAlshaimaa Mohammed Said
Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
Contribution: Writing - review & editing
Search for more papers by this authorCorresponding Author
Mohamed Mohamed Soliman
Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
Correspondence
Mohamed Mohamed Soliman, Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
Email: [email protected]
Contribution: Writing - original draft
Search for more papers by this authorAdel Aldhahrani
Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
Contribution: Writing - original draft
Search for more papers by this authorYousef Saeed Alghamdi
Biology Department, Turabah University College, Taif University, Taif, Saudi Arabia
Contribution: Visualization
Search for more papers by this authorAlshaimaa Mohammed Said
Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
Contribution: Writing - review & editing
Search for more papers by this authorFunding information
This study was supported by Taif University Researchers Supporting Project (TURSP-2020/09), Taif University, Taif, Saudi Arabia
Abstract
Thyme (Thymus vulgaris) is an herbal plant with pleiotropic medicinal properties. In this study, we examined the possible protective effect of an ethanolic extract of thyme leaves against the renal oxidative stress induced by sodium nitrite (NaNO2). Male Swiss mice received either saline or thyme extract for 15 days (0.5 g/kg body weight, orally). NaNO2 (60 mg/kg) was injected intraperitoneally at Day 14. The protective group received the thyme extract for 15 days and NaNO2 on Day 14. Blood and kidney samples were taken from all groups to measure serum urea, blood urea nitrogen (BUN), creatinine, serum, tissue antioxidant activity, and the inflammatory cytokines IL-1β and IL-6. Quantitative real-time PCR (qRT-PCR) was used to examine the expression of kidney injury marker-1 (Kim-1), TNF-α, nuclear factor erythroid-2 related factor 2 (Nrf2), and hemoxygenase-1 (HO-1), all of which are associated with kidney redox and oxidative stress. Pretreatment with thyme extract reduced the effects of NaNO2 on urea, BUN, and creatinine, and reversed its effect on tissue and serum antioxidants. NaNO2-induced nephritis as demonstrated by the upregulation in mRNA expression of Kim-1 and TNF-α, which was, however, recovered and protected by pretreatment with thyme extract. Expression of Nrf2 and HO-1 was upregulated by treatment with thyme extract and downregulated by NaNO2 intoxication. NaNO2-induced congestion in glomeruli and dilatation of the renal tubules, conditions that were restored in the group pretreated with thyme extract. NaNO2 upregulated Bax immunoreactivity and caused apoptosis in renal structures. Thus, thyme extract is effective in managing the renal toxicity associated with oxidative stress and renal redox.
Practical applications
The results from this study have shown that use of thyme extract may promote better health due to its high antioxidant activity. For instance, it could be ingested to alleviate the symptoms of renal inflammation and oxidative stress associated with nitrite toxicity. Thyme extract regulated renal redox, oxidative stress, antioxidant levels, and inflammation-associated genes at the molecular, biochemical, and cellular immunohistochemical levels.
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data are available up on request.
REFERENCES
- Abd El-Twab, S. M., Hozayen, W. G., Hussein, O. E., & Mahmoud, A. M. (2016). 18β-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Renal Failure, 38(9), 1516–1527. https://doi.org/10.1080/0886022x.2016.1216722
- Abd El-Twab, S. M., Hussein, O. E., Hozayen, W. G., Bin-Jumah, M., & Mahmoud, A. M. (2019). Chicoric acid prevents methotrexate-induced kidney injury by suppressing NF-kappaB/NLRP3 inflammasome activation and up-regulating Nrf2/ARE/HO-1 signaling. Inflammation Research, 68(6), 511–523. https://doi.org/10.1007/s00011-019-01241-z
- Abdel-Azeem, A. S., Hegazy, A. M., Zeidan, H. M., Ibrahim, K. S., & El-Sayed, E. M. (2017). Potential renoprotective effects of rosemary and thyme against gentamicin toxicity in rats. Journal of Dietary Supplements, 14(4), 380–394. https://doi.org/10.1080/19390211.2016.1253632
- Abdel-Aziem, S. H., Hassan, A. M., El-Denshary, E. S., Hamzawy, M. A., Mannaa, F. A., & Abdel-Wahhab, M. A. (2014). Ameliorative effects of thyme and calendula extracts alone or in combination against aflatoxins-induced oxidative stress and genotoxicity in rat liver. Cytotechnology, 66(3), 457–470. https://doi.org/10.1007/s10616-013-9598-7
- Abdou, K. H., Moselhy, W. A., Mohamed, H. M., El-Nahass, E. S., & Khalifa, A. G. (2019). Moringa oleifera Leaves extract protects titanium dioxide nanoparticles-induced nephrotoxicity via Nrf2/HO-1 signaling and amelioration of oxidative stress. Biological Trace Element Research, 187(1), 181–191. https://doi.org/10.1007/s12011-018-1366-2
- Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
- Aladaileh, S. H., Hussein, O. E., Abukhalil, M. H., Saghir, S. A. M., Bin-Jumah, M., Alfwuaires, M. A., Germoush, M. O., Almaiman, A. A., & Mahmoud, A. M. (2019). Formononetin upregulates Nrf2/HO-1 signaling and prevents oxidative stress, inflammation, and kidney injury in methotrexate-induced rats. Antioxidants, 8(10), 430. https://doi.org/10.3390/antiox8100430
- Al-Rasheed, N. M., Fadda, L. M., Attia, H. A., Ali, H. M., & Al-Rasheed, N. M. (2017). Quercetin inhibits sodium nitrite-induced inflammation and apoptosis in different rats organs by suppressing Bax, HIF1-α, TGF-β, Smad-2, and AKT pathways. Journal of Biochemical and Molecular Toxicology, 31(5). https://doi.org/10.1002/jbt.21883
- Ansari, F. A., Ali, S. N., Arif, H., Khan, A. A., & Mahmood, R. (2017). Acute oral dose of sodium nitrite induces redox imbalance, DNA damage, metabolic and histological changes in rat intestine. PLoS ONE, 12(4), e0175196. https://doi.org/10.1371/journal.pone.0175196
- Ansari, F. A., Ali, S. N., Khan, A. A., & Mahmood, R. (2018). Acute oral dose of sodium nitrite causes redox imbalance and DNA damage in rat kidney. Journal of Cellular Biochemistry, 119(4), 3744–3754. https://doi.org/10.1002/jcb.26611
- Ansari, F. A., Khan, A. A., & Mahmood, R. (2018a). Ameliorative effect of carnosine and N-acetylcysteine against sodium nitrite induced nephrotoxicity in rats. Journal of Cellular Biochemistry, 120, 7032–7044. https://doi.org/10.1002/jcb.27971
- Ansari, F. A., Khan, A. A., & Mahmood, R. (2018b). Protective effect of carnosine and N-acetylcysteine against sodium nitrite-induced oxidative stress and DNA damage in rat intestine. Environmental Science and Pollution Research International, 25(20), 19380–19392. https://doi.org/10.1007/s11356-018-2133-9
- Ansari, F. A., & Mahmood, R. (2016). Sodium nitrite enhances generation of reactive oxygen species that decrease antioxidant power and inhibit plasma membrane redox system of human erythrocytes. Cell Biology International, 40(8), 887–894. https://doi.org/10.1002/cbin.10628
- Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.
- Bhatia, M., & Moochhala, S. (2004). Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology, 202(2), 145–156. https://doi.org/10.1002/path.1491
- Butler, A. R., & Feelisch, M. (2008). Therapeutic uses of inorganic nitrite and nitrate: From the past to the future. Circulation, 117(16), 2151–2159. https://doi.org/10.1161/circulationaha.107.753814
- Carlstrom, M., & Montenegro, M. F. (2019). Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. Journal of Internal Medicine, 285(1), 2–18. https://doi.org/10.1111/joim.12818
- Carlström, M., Persson, A. E. G., Larsson, E., Hezel, M., Scheffer, P. G., Teerlink, T., Weitzberg, E., & Lundberg, J. O. (2011). Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovascular Research, 89(3), 574–585. https://doi.org/10.1093/cvr/cvq366
- Coppolino, G., Leonardi, G., Andreucci, M., & Bolignano, D. (2018). Oxidative stress and kidney function: A brief update. Current Pharmaceutical Design, 24(40), 4794–4799. https://doi.org/10.2174/1381612825666190112165206
- Devarajan, P. (2011). Biomarkers for the early detection of acute kidney injury. Current Opinion in Pediatrics, 23(2), 194–200. https://doi.org/10.1097/MOP.0b013e328343f4dd
- El-Boshy, M. E., Refaat, B., Qasem, A. H., Khan, A., Ghaith, M., Almasmoum, H., Mahbub, A., & Almaimani, R. A. (2019). The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. Environmental Science and Pollution Research International, 26(22), 22736–22746. https://doi.org/10.1007/s11356-019-05562-8
- El-Nabarawy, N. A., Gouda, A. S., Khattab, M. A., & Rashed, L. A. (2020). Effects of nitrite graded doses on hepatotoxicity and nephrotoxicity, histopathological alterations, and activation of apoptosis in adult rats. Environmental Science and Pollution Research International, 27(12), 14019–14032. https://doi.org/10.1007/s11356-020-07901-6
- El-Nekeety, A. A., Mohamed, S. R., Hathout, A. S., Hassan, N. S., Aly, S. E., & Abdel-Wahhab, M. A. (2011). Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon, 57(7–8), 984–991. https://doi.org/10.1016/j.toxicon.2011.03.021
- El-Sheikh, N. M., & Khalil, F. A. (2011). L-arginine and L-glutamine as immunonutrients and modulating agents for oxidative stress and toxicity induced by sodium nitrite in rats. Food and Chemical Toxicology, 49(4), 758–762. https://doi.org/10.1016/j.fct.2010.11.039
- Elsherbiny, N. M., Maysarah, N. M., El-Sherbiny, M., & Al-Gayyar, M. M. (2017). Renal protective effects of thymoquinone against sodium nitrite-induced chronic toxicity in rats: Impact on inflammation and apoptosis. Life Sciences, 180, 1–8. https://doi.org/10.1016/j.lfs.2017.05.005
- Finkel, T. (2011). Signal transduction by reactive oxygen species. Journal of Cell Biology, 194(1), 7–15. https://doi.org/10.1083/jcb.201102095
- Ge, M., Yao, W., Yuan, D., Zhou, S., Chen, X. I., Zhang, Y., Li, H., Xia, Z., & Hei, Z. (2017). Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury. Cell Death & Disease, 8(6), e2841. https://doi.org/10.1038/cddis.2017.236
- Gutiérrez, M. B., Miguel, B. S., Villares, C., Gallego, J. G., & Tuñón, M. J. (2006). Oxidative stress induced by Cremophor EL is not accompanied by changes in NF-kappaB activation or iNOS expression. Toxicology, 222(1–2), 125–131. https://doi.org/10.1016/j.tox.2006.02.002
- Hassan, H. A., El-Agmy, S. M., Gaur, R. L., Fernando, A., Raj, M. H., & Ouhtit, A. (2009). In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. International Journal of Biological Sciences, 5(3), 249–255. https://doi.org/10.7150/ijbs.5.249
- Hull, T. D., Boddu, R., Guo, L., Tisher, C. C., Traylor, A. M., Patel, B., Joseph, R., Prabhu, S. D., Suliman, H. B., Piantadosi, C. A., Agarwal, A., & George, J. F. (2016). Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight, 1(2), e85817. https://doi.org/10.1172/jci.insight.85817
- Hyun, T. K., Kim, H.-C., & Kim, J.-S.-J.-I.-C. (2014). Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. Industrial Crops and Products, 52, 611–616. https://doi.org/10.1016/j.indcrop.2013.11.039
- Khafaga, A. F., & El-Sayed, Y. S. (2018). Spirulina ameliorates methotrexate hepatotoxicity via antioxidant, immune stimulation, and proinflammatory cytokines and apoptotic proteins modulation. Life Sciences, 196, 9–17. https://doi.org/10.1016/j.lfs.2018.01.010
- King, A. M., Glass, K. A., Milkowski, A. L., & Sindelar, J. J. (2015). Impact of clean-label antimicrobials and nitrite derived from natural sources on the outgrowth of Clostridium perfringens during cooling of Deli-Style Turkey Breast. Journal of Food Protection, 78(5), 946–953. https://doi.org/10.4315/0362-028x.Jfp-14-503
- Li, J., Hu, R., Xu, S., Li, Y., Qin, Y., Wu, Q., & Xiao, Z. (2017). Xiaochaihutang attenuates liver fibrosis by activation of Nrf2 pathway in rats. Biomedicine & Pharmacotherapy, 96, 847–853. https://doi.org/10.1016/j.biopha.2017.10.065
- Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cellular and Molecular Life Sciences, 73(17), 3221–3247. https://doi.org/10.1007/s00018-016-2223-0
- Lundberg, J. O., Weitzberg, E., & Gladwin, M. T. (2008). The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery, 7(2), 156–167. https://doi.org/10.1038/nrd2466
- Mahmoud, A. M., Hozayen, W. G., & Ramadan, S. M. (2017). Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARγ, and suppressing oxidative stress and apoptosis in rats. Biomedicine & Pharmacotherapy, 94, 280–291. https://doi.org/10.1016/j.biopha.2017.07.101
- McNally, B., Griffin, J. L., & Roberts, L. D. (2016). Dietary inorganic nitrate: From villain to hero in metabolic disease? Molecular Nutrition & Food Research, 60(1), 67–78. https://doi.org/10.1002/mnfr.201500153
- Moskaug, J., Carlsen, H., Myhrstad, M. C., & Blomhoff, R. (2005). Polyphenols and glutathione synthesis regulation. American Journal of Clinical Nutrition, 81(Suppl. 1), 277s–283s. https://doi.org/10.1093/ajcn/81.1.277S
- Myhrstad, M. C., Carlsen, H., Nordström, O., Blomhoff, R., & Moskaug, J. (2002). Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radical Biology and Medicine, 32(5), 386–393. https://doi.org/10.1016/s0891-5849(01)00812-7
- Nishikimi, M., Appaji, N., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2), 849–854. https://doi.org/10.1016/s0006-291x(72)80218-3
- Noroozisharaf, A., & Kaviani, M. (2018). Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants, 24(3), 423–431. https://doi.org/10.1007/s12298-018-0510-y
- Nossaman, V. E., Nossaman, B. D., & Kadowitz, P. J. (2010). Nitrates and nitrites in the treatment of ischemic cardiac disease. Cardiology in Review, 18(4), 190–197. https://doi.org/10.1097/CRD.0b013e3181c8e14a
- Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
- Ratliff, B. B., Abdulmahdi, W., Pawar, R., & Wolin, M. S. (2016). Oxidant mechanisms in renal injury and disease. Antioxidants & Redox Signaling, 25(3), 119–146. https://doi.org/10.1089/ars.2016.6665
- Sajed, H., Sahebkar, A., & Iranshahi, M. (2013). Zataria multiflora Boiss. (Shirazi thyme)—An ancient condiment with modern pharmaceutical uses. Journal of Ethnopharmacology, 145(3), 686–698. https://doi.org/10.1016/j.jep.2012.12.018
- Schött, G., Liesegang, S., Gaunitz, F., Gleß, A., Basche, S., Hannig, C., & Speer, K. (2017). The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of T. vulgaris on the bacterial colonization of the in situ pellicle. Fitoterapia, 121, 118–128. https://doi.org/10.1016/j.fitote.2017.07.005
- Selvaratnam, J., & Robaire, B. (2016). Overexpression of catalase in mice reduces age-related oxidative stress and maintains sperm production. Experimental Gerontology, 84, 12–20. https://doi.org/10.1016/j.exger.2016.08.012
- Sharma, A., Sangameswaran, B., Jain, V., & Saluja, M. S. (2012). Hepatoprotective activity of Adina cordifolia against ethanol induce hepatotoxicity in rats. International Current Pharmaceutical Journal, 1, 279–284. https://doi.org/10.3329/icpj.v1i9.11619
10.3329/icpj.v1i9.11619 Google Scholar
- Sherif, I. O., & Al-Gayyar, M. M. (2013). Antioxidant, anti-inflammatory and hepatoprotective effects of silymarin on hepatic dysfunction induced by sodium nitrite. European Cytokine Network, 24(3), 114–121. https://doi.org/10.1684/ecn.2013.0341
- Sherif, I. O., & Al-Gayyar, M. M. (2015). Cod liver oil in sodium nitrite induced hepatic injury: Does it have a potential protective effect? Redox Report, 20(1), 11–16. https://doi.org/10.1179/1351000214y.0000000097
- Shi, S., Lei, S., Tang, C., Wang, K., & Xia, Z. (2019). Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Bioscience Reports, 39(1), BSR20181614. https://doi.org/10.1042/bsr20181614
- Shiva, S. (2013). Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function. Redox Biology, 1(1), 40–44. https://doi.org/10.1016/j.redox.2012.11.005
- Sullivan, G. A., Jackson-Davis, A. L., Niebuhr, S. E., Xi, Y., Schrader, K. D., Sebranek, J. G., & Dickson, J. S. (2012). Inhibition of Listeria monocytogenes using natural antimicrobials in no-nitrate-or-nitrite-added ham. Journal of Food Protection, 75(6), 1071–1076. https://doi.org/10.4315/0362-028x.Jfp-11-511
- Szabo, G., & Csak, T. (2012). Inflammasomes in liver diseases. Journal of Hepatology, 57(3), 642–654. https://doi.org/10.1016/j.jhep.2012.03.035
- Telorack, M., Meyer, M., Ingold, I., Conrad, M., Bloch, W., & Werner, S. (2016). A glutathione-Nrf2-thioredoxin cross-talk ensures keratinocyte survival and efficient wound repair. PLoS Genetics, 12(1), e1005800. https://doi.org/10.1371/journal.pgen.1005800
- Tichati, L., Trea, F., & Ouali, K. (2020). Potential role of selenium against hepatotoxicity induced by 2,4-dichlorophenoxyacetic acid in albino Wistar rats. Biological Trace Element Research, 194(1), 228–236. https://doi.org/10.1007/s12011-019-01773-9
- Ulukanli, Z., Cigremis, Y., & Ilcim, A. (2011). In vitro antimicrobial and antioxidant activity of acetone and methanol extracts from Thymus leucotrichius (Lamiaceae). European Review for Medical and Pharmacological Sciences, 15(6), 649–657.
- Willcox, J. K., Ash, S. L., & Catignani, G. L. (2004). Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition, 44(4), 275–295. https://doi.org/10.1080/10408690490468489