Characterization of Vicia ervilia (bitter vetch) seed proteins, free amino acids, and polyphenols
Corresponding Author
Javier Vioque
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Correspondence
Javier Vioque, Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089 Sevilla, Spain.
Email: [email protected]
Search for more papers by this authorJulio Girón-Calle
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Search for more papers by this authorVerenice Torres-Salas
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Search for more papers by this authorYoussef Elamine
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Search for more papers by this authorManuel Alaiz
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Search for more papers by this authorCorresponding Author
Javier Vioque
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Correspondence
Javier Vioque, Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089 Sevilla, Spain.
Email: [email protected]
Search for more papers by this authorJulio Girón-Calle
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Search for more papers by this authorVerenice Torres-Salas
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Search for more papers by this authorYoussef Elamine
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Search for more papers by this authorManuel Alaiz
Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Sevilla, Spain
Search for more papers by this authorAbstract
Vicia ervilia is an ancient crop from the Mediterranean Region. It may represent a useful source of proteins for food and animal feed, as well as bioactive components. Seed samples from 39 populations of V. ervilia have been analyzed. Polyphenol contents ranged from 0.09% to 0.19%. Luteolin, kaempferol, apigenin, and quercetin were the major aglycones. The total free amino acid content of the seeds was 0.05% to 0.19% in which canavanine represented 9% to 22%. The protein content was 24.1%. The amino acid composition indicated a high content in acidic amino acids and a deficit in sulphur amino acids. V. ervilia seeds proved to be a good substrate for the preparation of protein isolates. The seed extracts inhibited the proliferation of Caco-2 colon tumor cells, simultaneously, exerting antioxidative effects. Hence, seeds of V. ervilia could represent a source of high-value food and feed components, as well as functional components.
Practical applications
Vicia ervilia (bitter vetch) (Leguminosae) is an ancient crop from the Mediterranean Region. Although it was still grown in many Mediterranean countries at the beginning of the twentieth century, other crops that provide higher and more consistent yield later replaced it. However, V. ervilia seeds may represent a useful source of proteins for human nutrition and animal feeding, and a source of bioactive components with health-promoting properties. Our results show that the seeds of V. ervilia could, indeed, represent a source of high-value food and feed components, as well as functional, health-promoting components. This may result in a revalorization of this neglected crop. The availability of numerous populations in seed banks guarantees the preservation of a genetic diversity in V. ervilia that could be used for the production of new varieties with better nutritional and functional characteristics.
CONFLICT OF INTEREST
All the authors declare that there exists no conflict of interest.
REFERENCES
- Akaogi, J., Barker, T., Kuroda, Y., Nacionales, D. C., Yamasaki, Y., Stevens, B. R., … Satoh, M. (2006). Role of non-protein amino acid L-canavanine in autoimmunity. Autoimmunity Reviews, 5, 429–435. https://doi.org/10.1016/j.autrev.2005.12.004
- Alaiz, M., Navarro, J. L., Giron, J., & Vioque, E. (1992). Amino acid analysis by high-performance liquid chromatography after derivatization with diethylethoxymethylenemalonate. Journal of Chromatography A, 591, 181–186. https://doi.org/10.1016/0021-9673(92)80236-N
- Aletor, V. A., Goodchild, A. V., & Abd El Moneim, A. M. (1994). Nutritional and antinutritional characteristics of selected Vicia genotypes. Animal Feed Science Technology, 47, 125–139. https://doi.org/10.1016/0377-8401(94)90165-1
- Ali, F., Rahul, Naz, F., Jyoti, S., & Siddique, Y. H. (2017). Health functionality of apigenin: A review. International Journal of Food Properties, 20, 1197–1238. https://doi.org/10.1080/10942912.2016.1207188
- Aura, J. E., Carrión, Y., Estrelles, E., & Jordà, G. P. (2005). Plant economy of hunter-gatherer groups at the end of the last Ice Age: Plant macroremains from the cave of Santa Maira (Alacant, Spain) ca. 12000–9000 b.p. Vegetation History and Archaeobotany, 14, 542–550. https://doi.org/10.1007/s00334-005-0002-1
- Borenfreund, E., & Puerner, J. A. (1985). Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicology Letters, 24, 119–124. https://doi.org/10.1016/0378-4274(85)90046-3
- Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analitycal Biochemistry, 72, 248–254.
- Chen, A. Y., & Chen, Y. C. (2017). A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry, 138, 2099–2107. https://doi.org/10.1016/j.foodchem.2012.11.139
- Dinelli, G., Bonetti, A., Minelli, M., Marotti, I., Catizone, P., & Mazzanti, A. (2006). Content of flavonols in Italian bean (Phaseolus vulgaris L.) ecotypes. Food Chemistry, 99, 105–114. https://doi.org/10.1016/j.foodchem.2005.07.028
- Duranti, M. (2006). Grain legume proteins and nutraceutical properties. Fitoterapia, 77, 67–82. https://doi.org/10.1016/j.fitote.2005.11.008
- Duthie, G. G., Duthie, S. J., & Kyle, J. A. M. (2000). Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutrition Research Review, 13, 79–106. https://doi.org/10.1079/095442200108729016
- Erskine, W. (1998). Use of historical and archaeological information in lentil improvement today. In A. B. Damania, J. Valkoun, G. Willcox, & C. O. Qualset (Eds.), Origins of agricultural and crop domestication (pp. 191–198). Aleppo, Syria: ICARDA.
- FAO/WHO/UNU. (1985). Energy and protein requirements. Report of the joint FAO/WHO/UNU expert consultation. Technical report series No. 724. Geneva, Switzerland: FAO, WHO and the United Nations University.
- Farran, M. T., Barbour, G. W., Uwayjan, M. G., & Ashkarian, V. M. (2001). Metabolizable energy values and amino acids availability of vetch (Vicia sativa) and ervil (Vicia ervilia) seeds soaked in water and acetic acid. Poultry Science, 80, 931–936.
- Gaetke, L. M., & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189, 147–163. https://doi.org/10.1016/S0300-483X(03)00159-8
- Henry, A. G., Brooks, A. S., & Piperno, D. R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Sciences of the United States of America, 108, 486–491. https://doi.org/10.1073/pnas.1016868108
- Islam, F., Gopalan, V., Lam, A. K. Y., & Kabir, S. R. (2018). Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. International Journal Biological Macromolecules, 117, 1050–1057. https://doi.org/10.1016/j.ijbiomac.2018.06.021
- Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. (2017). Kaempferol—A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal Functional Foods, 30, 203–219. https://doi.org/10.1016/j.jff.2017.01.022
- Kellett, M. E., Greenspan, P., & Pegg, R. B. (2018). Modification of the cellular antioidant activty (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chemistry, 244, 359–363.
- López-Bellido, L. (1994). Grain legumes for animal feed. In J. E. Hernández-Bermejo & J. León (Eds.), Neglected crops. 1492 from a different perspective ( 273–288). Rome, Italy: FAO.
- Madunic, J., Madunic, I. V., Gajski, G., Popic, J., & Garaj-Urhovac, U. (2018). Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Letters, 413, 11–22. https://doi.org/10.1016/j.canlet.2017.10.041
- Megías, C., Cortés-Giraldo, I., Alaiz, M., Girón-Calle, J., Vioque, J., Santana-Meridas, O., … Sanchez-Vioque, R. (2015). Determination of the neurotoxin 3-N-oxalyl-2,3-diaminopropionic acid and other free amino acids in Lathyrus cicera and L. sativus seeds by reversed-phase high-performance liquid chromatography. Food Analytical Methods, 8, 1953–1961. https://doi.org/10.1007/s12161-014-0084-4
- Megías, C., Cortés-Giraldo, I., Girón-Calle, J., Alaiz, M., & Vioque, J. (2016). Free amino acids, including canavanine, in the seeds from 32 Vicia species belonging to subgenus Vicilla. Biocatalysis and Agricultural Biotechnology, 8, 126–129. https://doi.org/10.1016/j.bcab.2016.09.001
- Megías, C., Cortés-Giraldo, I., Girón-Calle, J., Vioque, J., & Alaiz, M. (2014). Determination of beta-cyano-L-alanine, gamma-glutamyl-beta-cyano-L-alanine, and common free amino acids in Vicia sativa (Fabaceae) seeds by reversed-phase high-performance liquid chromatography. Journal Analytical Methods Chemistry, 409089. https://doi.org/10.1155/2014/409089
- Megías, C., Cortés-Giraldo, I., Girón-Calle, J., Vioque, J., & Alaiz, M. (2015). Determination of I-canavanine and other free amino acids in Vicia disperma (Fabaceae) seeds by precolumn derivatization using diethyl ethoxymethylenemalonate and reversed-phase high-performance liquid chromatography. Talanta, 131, 95–98.
- Mikic, A., Medovic, A., Jovanovic, Z., & Stanisavljevic, N. (2015). A note on the earliest distribution, cultivation and genetic changes in bitter vetch (Vicia ervilia) in ancient Europe. Genetika, 47, 1–11. https://doi.org/10.2298/GENSR1501001M
10.2298/GENSR1501001M Google Scholar
- Mohammadi, L., & Sadeghi, G. H. (2009). Using different ratios of bitter vetch (Vicia ervilia) seed for moult inductino and post-moult performance in commercial laying hens. British Poultry Science, 50, 207–212.
- Olivares-Vicente, M., Barrajon-Catalan, E., Herranz-Lopez, M., Segura-Carretero, A., Jove, J., Encinar, J. A., & Micol, V. (2018). Plant-derived polyphenols in human health: Biological activity, metabolites and putative molecular targets. Current Drugs Metabolism, 19, 351–369. https://doi.org/10.2174/1389200219666180220095236
- Oyaizu, M. (1986). Studies of products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Japan Journal Nutrition, 44, 307–315.
- Pastor-Cavada, E., Juan, R., Pastor, J. E., Alaiz, M., Girón-Calle, J., & Vioque, J. (2011). Antioxidative activity in the seeds of 28 species from southern Spain. Journal of Food Biochemistry, 35, 1373–1380.
- Pastor-Cavada, E., Juan, R., Pastor, J. E., Alaiz, M., & Vioque, J. (2011). Nutritional characteristics of seed proteins in 28 Vicia species (Fabaceae) from southern Spain. Journal Food Science, 76, C1118–C1124. https://doi.org/10.1111/j.1750-3841.2011.02336.x
- Rosenthal, G. A. (2001). L-Canavanine: A higher plant insecticidal allelochemical. Amino Acids, 21, 319–330. https://doi.org/10.1007/s007260170017
- Sadeghi, G., Samie, A., Pourreza, J., & Rahmani, H. R. (2004). Canavanine content and toxicity of raw and treated bitter vetch (Vicia ervilia) seeds for broiler chicken. International Journal Poultry Science, 3, 522–529.
10.3923/ijps.2004.522.529 Google Scholar
- Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal Agricultural Food Chemistry, 51, 3661–3667. https://doi.org/10.1021/jf021156g
- Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
- Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Análisis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymology, 299, 152–178.
- Staszek, P., Weston, L. A., Ciacka, K., Krasuska, U., & Gniazdowska, A. (2017). L-Canavanine: How does a simple non-protein amino acid inhibit cellular function in a diverse living system. Phytochemistry Review, 16, 1269–1282. https://doi.org/10.1007/s11101-017-9536-y
- Vynnytska-Mynorovska, B., Bobak, Y., Garbe, Y., Dittfeld, C., Stasyk, O., & Kunz-Schughart, L. A. (2012). Single amino acid arginine starvation efficiently sensitizes cancer cells to canavanine treatment and irradiation. International Journal Cancer, 130, 2164–2175. https://doi.org/10.1002/ijc.26221
- Wolfe, K. L., & Liu, H. L. (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal Agricultural Food Chemistry, 55, 8896–8907. https://doi.org/10.1021/jf0715166
- Yust, M. M., Pedroche, J., Girón-Calle, J., Vioque, J., Millán, F., & Alaiz, M. (2004). Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection. Food Chemistry, 85, 317–320. https://doi.org/10.1016/j.foodchem.2003.07.026