Second-generation sequencing for gene discovery in the Brassicaceae
Alice Hayward
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorGuru Vighnesh
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorChristina Delay
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorMohd Rafizan Samian
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorSahana Manoli
Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorJiri Stiller
Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorMegan McKenzie
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorDavid Edwards
Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorCorresponding Author
Jacqueline Batley
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
(Tel +61 (0)7 334 69534; fax +61 (0)7 336 51188; email [email protected])Search for more papers by this authorAlice Hayward
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorGuru Vighnesh
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorChristina Delay
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorMohd Rafizan Samian
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorSahana Manoli
Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorJiri Stiller
Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorMegan McKenzie
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorDavid Edwards
Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
Search for more papers by this authorCorresponding Author
Jacqueline Batley
ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
(Tel +61 (0)7 334 69534; fax +61 (0)7 336 51188; email [email protected])Search for more papers by this authorSummary
The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen-fixing rhizobia bacteria. This study applied second-generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.
Supporting Information
Figure S1 Multiple sequence alignments of Brassicaceae NSP genes from TAGdb. Complete gene sequences from TAGdb assemblies are aligned with the Arabidopsis and Brassica rapa reference sequences. (A) NSP1 (B) NSP2. Br = B. rapa, Dt = Diplotaxis tenuifolia, Hi = Hirschfelida incana, Sa = Sinapis alba.
Table S1 Brassicaceae species used for PCR amplification of NSP1 and NSP2.
Table S2 Primers designed and used in this study.
Filename | Description |
---|---|
PBI_719_sm_FigS1-TableS1-S2.docx1.1 MB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Bolle, C. (2004) The role of GRAS proteins in plant signal transduction and development. Planta, 218, 683–692.
- Bromberg, Y. and Rost, B. (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 35, 3823–3835.
- Chen, X., Truksa, M., Shah, S. and Weselake, R.J. (2010) A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Anal. Biochem. 405, 138–140.
- Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T. and Wilson, A. (2011. Geneious v5.5, Available from http://www.geneious.com/.
- Duran, C., Eales, D., Marshall, D., Imelfort, M., Stiller, J., Berkman, P., Clark, T., McKenzie, M., Appleby, N., Batley, J., Basford, K. and Edwards, D. (2010) Future tools for association mapping in crop plants. Genome, 53, 1017–1023.
- Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.
- Edwards, D. and Batley, J. (2010) Plant genome sequencing: applications for crop improvement. Plant Biotech. J. 8, 2–9.
- Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M.H., Lin, Y.H., Reid, D.E. and Gresshoff, P.M. (2010) Molecular analysis of legume nodule development and autoregulation. J. Integr Plant Biol. 52, 61–76.
- Fulton, T.M., Chunwongse, J. and Tanksley, S.D. (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13, 207–209.
- Gerdemann, J.W. (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopathol. 6, 397–418.
- Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pagès, V., Dun, E.A., Pillot, J.P., Letisse, F., Matusova, R., Danoun, S., Portais, J.C., Bouwmeester, H., Bécard, G., Beveridge, C.A., Rameau, C. and Rochange, S.F. (2008) Strigolactone inhibition of shoot branching. Nature, 455, 189–194.
- Guindon, S. and Gascuel, O. (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.
- Hayward, A. (2011) Introduction to Oilseed Brassicas. In: Oilseed Brassicas ( D. Edwards, I. Parkin and J. Batley, eds), pp. 1–13. USA: Science Publishers Inc.
- Hayward, A., Stirnberg, P., Beveridge, C. and Leyser, O. (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151, 400–412.
- Heckmann, A.B., Lombardo, F., Miwa, H., Perry, J.A., Bunnewell, S., Parniske, M., Wang, T.L. and Downie, J.A. (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 142, 1739–1750.
- Hirsch, S., Kim, J., Muñoz, A., Heckmann, A.B., Downie, J.A. and Oldroyd, G.E.D. (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 21, 545–557.
- Imelfort, M., Duran, C., Batley, J. and Edwards, D. (2009) Discovering genetic polymorphisms in next generation sequencing data. Plant Biotechnol. J. 7, 312–317.
- Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. (2006) Plant cells recognize chitin fragments for defense signalling through a plasma membrane receptor. Proc. Natl Acad. Sci. USA, 103, 11086–11091.
- Kaló, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., Rogers, J., Kiss, G.B., Downie, J.A. and Oldroyd, G.E. (2005) Nodulation signaling in legumes requires NSP2, amember of the GRAS family of transcriptional regulators. Science, 308, 1786–1789.
- Kumar, P., Henikoff, S. and Ng, P.C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081.
- Liu, W., Kohlen, W., Lillo, A., Op den Camp, R., Ivanov, S., Hartog, M., Limpens, E., Jamil, M., Smaczniak, C., Kaufmann, K., Yang, W.C., Hooiveld, G.J., Charnikhova, T., Bouwmeester, H.J., Bisseling, T. and Geurts, R. (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 23, 3853–3865.
- Lopez-Gomez, M., Sandal, N., Stougaard, J. and Boller, T. (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63, 393–401.
- Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Bécard, G. and Dénarié, J. (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469, 58–63.
- Marshall, D.J., Hayward, A., Eales, D., Imelfort, M., Stiller, J., Berkman, P.J., Clark, T., McKenzie, M., Lai, K., Duran, C., Batley, J. and Edwards, D. (2010) Targeted identification of genomic regions using TAGdb. Plant Methods, doi:10.1186/1746-4811-6-19.
- McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol, 123, 439–442.
- Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl Acad. Sci. USA, 104, 19613–19618.
- Oelmüller, R., Sherameti, I., Tripathi, S. and Varma, A. (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49, 1–17.
- Qiu, D., Morgan, C., Shi, J., Long, Y., Liu, J., Li, R., Zhuang, X., Wang, Y., Tan, X., Dietrich, E., Weihmann, T., Everett, C., Vanstraelen, S., Beckett, P., Fraser, F., Trick, M., Barnes, S., Wilmer, J., Schmidt, R., Li, J., Li, D., Meng, J. and Bancroft, I. (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor. Appl. Genet. 114, 67–80.
- Ramakers, C., Ruijter, J.M., Deprez, R.H. and Moorman, A.F. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66.
- Redecker, D., Kodner, R. and Graham, L.E. (2000) Glomalean fungi from the Ordovician. Science, 289, 1920–1921.
- Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., Cardoso, C., Lopez-Raez, J.A., Matusova, R., Bours, R., Verstappen, F. and Bouwmeester, H. (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol. 155, 721–734.
- Shahollari, B., Vadassery, J., Varma, A. and Oelmüller, R. (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J. 50, 1–13.
- Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A. and Oelmüller, R. (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J. Biol. Chem. 280, 26241–26247.
- Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H. and Shibuya, N. (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64, 204–214.
- Snowdon, R., Lühs, W. and Friedt, W. (2006) Oilseed Rape. In Genome Mapping and Molecular Breeding in Plants, Vol 2. ( C. Kole, ed), pp. 55–114. Berlin, Heidelberg: Springer-Verlag.
- Sprent, J.I. (2008) 60 Ma of legume nodulation. What’s new? What’s changing? J. Exp. Bot. 59, 1081–1084.
- Sun, C., Johnson, J.M., Cai, D., Sherameti, I., Oelmüller, R. and Lou, B. (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Plant Physiol. 167, 1009–1017.
- Tester, M., Smith, S.E. and Smith, F.A. (1987) The phenomenon of “nonmycorrhizal” plants. Can. J. Bot. 65, 419–431.
- Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J. and Yamaguchi, S. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195–200.
- Verma, S. and Varma, A. (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90, 896–903.
- Wan, J., Zhang, X.C., Neece, D., Ramonell, K.M., Clough, S., Kim, S.Y., Stacey, M.G. and Stacey, G. (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 20, 471–481.
- Wang, B. and Qiu, Y.-L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299–363.
- Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.H., Bancroft, I., Cheng, F., Huang, S., Li, X., Hua, W., Wang, J., Wang, X., Freeling, M., Pires, J.C., Paterson, A.H., Chalhoub, B., Wang, B., Hayward, A., Sharpe, A.G., Park, B.S., Weisshaar, B., Liu, B., Li, B., Liu, B., Tong, C., Song, C., Duran, C., Peng, C., Geng, C., Koh, C., Lin, C., Edwards, D., Mu, D., Shen, D., Soumpourou, E., Li, F., Fraser, F., Conant, G., Lassalle, G., King, G.J., Bonnema, G., Tang, H., Wang, H., Belcram, H., Zhou, H., Hirakawa, H., Abe, H., Guo, H., Wang, H., Jin, H., Parkin, I.A., Batley, J., Kim, J.S., Just, J., Li, J., Xu, J., Deng, J., Kim, J.A., Li, J., Yu, J., Meng, J., Wang, J., Min, J., Poulain, J., Wang, J., Hatakeyama, K., Wu, K., Wang, L., Fang, L., Trick, M., Links, M.G., Zhao, M., Jin, M., Ramchiary, N., Drou, N., Berkman, P.J., Cai, Q., Huang, Q., Li, R., Tabata, S., Cheng, S., Zhang, S., Zhang, S., Huang, S., Sato, S., Sun, S., Kwon, S.J., Choi, S.R., Lee, T.H., Fan, W., Zhao, X., Tan, X., Xu, X., Wang, Y., Qiu, Y., Yin, Y., Li, Y., Du, Y., Liao, Y., Lim, Y., Narusaka, Y., Wang, Y., Wang, Z., Li, Z., Wang, Z., Xiong, Z., Zhang, Z. and Brassica rapa Genome Sequencing Project Consortium (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035–1039.
- Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.-J., Cullimore, J.V., Jehle, A.K., Götz, F., Kulik, A., Molinaro, A., Lipka, V., Gust, A.A. and Nürnberger, T. (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl Acad. Sci. USA, 108, 19824–19829.
- Yokota, K., Soyano, T., Kouchi, H. and Hayashi, M. (2010) Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non-legume, rice. Plant Cell Physiol. 51, 1436–1442.
- Zhu, H., Riely, B.K., Burns, N.J. and Ané, J.M. (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics, 172, 2491–2499.