Multivariate Hill Estimators
Yves Dominicy
Solvay Brussels School of Economics and Management, Université libre de Bruxelles, ECARES, Brussels, Belgium
Search for more papers by this authorPauliina Ilmonen
Department of Mathematics and Systems Analysis, Aalto University School of Science, Espoo, Finland
Search for more papers by this authorCorresponding Author
David Veredas
Vlerick Business School and Ghent University, Gent, Belgium
Search for more papers by this authorYves Dominicy
Solvay Brussels School of Economics and Management, Université libre de Bruxelles, ECARES, Brussels, Belgium
Search for more papers by this authorPauliina Ilmonen
Department of Mathematics and Systems Analysis, Aalto University School of Science, Espoo, Finland
Search for more papers by this authorCorresponding Author
David Veredas
Vlerick Business School and Ghent University, Gent, Belgium
Search for more papers by this authorSummary
We propose two classes of semi-parametric estimators for the tail index of a regular varying elliptical random vector. The first one is based on the distance between a tail probability contour and the observations outside this contour. We denote it as the class of separating estimators. The second one is based on the norm of an arbitrary order. We denote it as the class of angular estimators. We show the asymptotic properties and the finite sample performances of both classes. We also illustrate the separating estimators with an empirical application to 21 worldwide financial market indexes.
References
- Breiman, L. (1965). On some limit theorems similar to the arc-sin law. Theory Probab. Appl., 10, 323–331.
- Caeiro, F. & Gomes, M. I. (2008). Minimum-variance reduced-bias tail index and high quantile estimation. REVSTAT Statistical Journal, 6(1), 1–20.
- Cai, J., Einmahl, J. & de Haan, L. (2011). Estimation of extreme risk regions under multivariate regular variation. Ann. Statist., 39, 1803–1826.
- Cator, E. & Lopuhaä, H. (2012). Central limit theorem and influence function for the MCD estimators at general multivariate distributions. Bernoulli, 18(2), 520–551.
- Christoffersen, P. (2012). Elements of Financial Risk Management. New York: Academic Press.
- Csörgő, S., Deheuvels, P. & Mason, D. (1985). Kernel estimates of the tail index of a distribution. Ann. Statist, 13, 1050–1077.
- Danielsson, J., de Haan, L., Peng, L. & de Vries, C. (2001). Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivariate Anal., 76, 226–248.
- de Haan, L. & Peng, L. (1998). Comparison of tail index estimators. Stat. Neerl., 52, 60–70.
- de Haan, L. & Resnick, S. (1998). On asymptotic normality of the Hill estimator. Comm. Statist. Stochastic Models, 14, 849–866.
10.1080/15326349808807504 Google Scholar
- Dekkers, A. L. M., Einmahl, J. H. J. & de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. Ann. Statist., 17, 1833–1855.
- Diop, A. & Lo, G. S. (2006). Generalized Hill's estimator. Far East J. Theor. Stat., 20(2), 129–149.
- Drees, H., de Haan, L. & Resnick, S. (2000). How to make a Hill plot. Ann. Statist., 28, 254–274.
- Einmahl, J., de Haan, L. & Huang, X. (1993). Estimating a multidimensional extreme value distribution. J. Multivariate Anal., 47, 35–47.
- Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag.
10.1007/978-3-642-33483-2 Google Scholar
- Fang, K., Kotz, S. & Ng, K. (1990). Symmetric Multivariate and Related Distributions. New York: Chapman and Hall.
10.1007/978-1-4899-2937-2 Google Scholar
- Feuerverger, A. & Hall, P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist., 27, 760–781.
- Fisher, R. & Tippett, L. (1928). Limiting forms of the frequency distribution of the largest and smallest member of a sample. Math. Proc. Cambridge Philos. Soc., 24, 180–190.
- Fraga Alves, M. I., Gomes, M. I., de Haan, L. & Neves, C. (2007). A note on second order conditions in extreme value theory: linking general and heavy tail conditions. REVSTAT Statistical Journal, 5(3), 285–304.
- Gabaix, X. & Ibragimov, R. (2011). Rank-1/2: a simple way to improve the ols estimation of tail exponents. J. Bus. Econ. Statist., 29(1), 24–39.
- Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Ann. of Math., 44, 423–453.
- Gomes, M., de Haan, L. & Peng, L. (2002). Semi-parametric estimation of the second-order parameter in statistics of extremes. Extremes, 5(4), 387–414.
10.1023/A:1025128326588 Google Scholar
- Gomes, M., Miranda, C. & Viseu, C. (2007). Reduced-bias tail index estimation and the jackknife methodology. Stat. Neerl., 61(2), 243–270.
- Gomes, M. & Oliviera, O. (2001). The bootstrap methodology in statistics of extremes choice of the optimal sample fraction. Extremes, 4, 331–358.
10.1023/A:1016592028871 Google Scholar
- Groeneboom, P., Lopuhaä, H. & de Wolf, P. (2003). Kernel-type estimators for the extreme value index. Ann. Statist., 31(6), 1956–1995.
- Haeusler, E. & Teugels, J. (1985). On the asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Statist., 13, 743–756.
- Hall, P. (1982). On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B, 44, 37–42.
- Hall, P. & Welsh, A. (1985). Adaptive estimates of parameters of regular variation. Ann. Statist., 13, 331–341.
- Hallin, M., Paindaveine, D. & Šiman, M. (2010). Multivariate quantiles and multiple-output regression quantiles: from l1 optimization to halfspace depth. Ann. Statist., 38(2), 635–669.
- Hartmann, P., Straetmans, S. & de Vries, C. (2006). Banking system stability: a cross-atlantic perspective. In Risk of Financial Institutions, Eds. M. Carey & R.M. Stulz, pp. 133–193. Chicago and London: The University of Chicago Press. NBER Working Paper No. 11698.
- Hashorva, E. (2006). On the regular variation of elliptical random vectors. Stat. Prob. Lett., 76, 1427–1434.
- Hill, B. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist., 13, 331–341.
- Hill, J. B. (2011). Tail and nontail memory with applications to extreme value and robust statistics. Econometric Theory, 27, 844–884.
- Hill, J. (2013). Tail index estimation for a filtered dependent time series, Technical Report, University of North Carolina. Chapel Hill.
- Hult, H. & Lindskog, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions. Adv. in Appl. Probab., 34, 587–608.
- Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorolog. Soc., 81, 158–171.
- Kelker, D. (1970). Distribution theory of spherical distributions and a locationscale parameter generalization. Sankhya, A32, 419–430.
- Klüppelberg, C., Kuhn, G. & Peng, L. (2007). Estimating the tail dependence of an elliptical distribution. Bernoulli, 13, 229–251.
- Klüppelberg, C., Kuhn, G. & Peng, L. (2008). Semi-parametric models for the multivariate tail dependence function – the asymptotically dependent case. Scand. J. Stat., 35, 701–718.
- Krajina, Andrea (2012). A method of moments estimator of tail dependence in meta-elliptical models. J. Statist. Plann. Inference., 142, 1811–1823.
- Lindskog, F., McNeil, A. & Schmock, U. (2003). Kendall's tau for elliptical distributions. In Credit Risk – Measurement, Evaluation and Management, Eds. G. Bol, T.R. Gholamreza Nakhaeizadeh, T.R. Svetlozar & K.-R. Vollmer. Heidelberg: Physica–Verlag HD.
10.1007/978-3-642-59365-9_8 Google Scholar
- Ling, S. & Peng, L. (2004). Hill's estimator for the tail index of an ARMA model. J. Statist. Plann. Inference, 123, 279–293.
- Mason, D. (1982). Laws of large numbers for sums of extreme values. Ann. Probab., 10, 754–765.
- Nguyen, T. & Samorodnitsky, G. (2012). Tail inference: where does the tail begin?. Extremes, 15(4), 437–461.
- Paindaveine, D. (2008). A canonical definition of shape. Statist. Prob. Lett., 78, 2240–2247.
- Persky, J. (1992). Retrospectives: Pareto law. J. of Econo. Perspectives, 6, 181–192.
- Pickands, J. (1975). Statistical inference using extreme order statistics. Ann. Statist., 3, 119–131.
- Poon, S., Rockinger, M. & Tawn, J. (2004). Extreme-value dependence in financial markets: diagnostics, models and financial implications. Rev. Fin. Studies, 17, 581–610.
- Resnick, S. & Stǎricǎ, C. (1997). Asymptotic behavior of Hill's estimator for autoregressive data. Comm. Statist. Stochastic Models, 13, 703–721.
10.1080/15326349708807448 Google Scholar
- Resnick, S. & Stǎricǎ, C. (1998). Tail index estimation for dependent data. Ann. Appl. Prob, 8, 1156–1183.
- Rousseeuw, P. (1985). Multivariate estimation with high breakdown point. In Mathematical statistics and applications, Eds. W Grossmann, G Pug, I Vincze & W. Wertz: Reidel; 283–297.
10.1007/978-94-009-5438-0_20 Google Scholar
- Rousseeuw, P. J. & Driesen, K. Van (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212–223.
- Schmidt, R. (2002). Tail dependence for elliptically contoured distributions. Math. Methods Oper. Res., 55, 301–327.
- Schmidt, R. (2003). Credit risk modelling and estimation via elliptical copulae. In Credit Risk: Measurement, Evaluation and Management, Eds. G. Bol, G. Nakhaeizadeh, S.T. Rachev, T. Ridder & K.-H. Vollmer, pp. 267–289. Heidelberg: Physica-Verlag.
10.1007/978-3-642-59365-9_14 Google Scholar
- Serfling, R. (2010). Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardization. J. Nonparametr. Stat., 22, 915–926.
- Sun, P. & de Vries, C. G. (2012). Hill bias under stable and Student-t alternatives. Working Paper. Available at https://fp7.portals.mbs.ac.uk/Portals/59/docs/MC%20deliverables/WP18_P_Sun_Hill_Bias_under_Student_and_Stable_Alternatives.pdf.
- Tyler, D. E. (1987). A distribution-free m-estimator of multivariate scatter. Ann. Statist., 15, 234–251.
- von Mises, R. (1936). La distribution de la plus grande de n valeurs. Amer. Math. Soc., 271–294.