Herbage accumulation, nutritive value, and fatty acid profile of bermudagrass cultivars grown in different latitudes
Corresponding Author
Igor L. Bretas
University of Florida, North Florida Research and Education Center, Marianna, Florida, USA
Correspondence
Igor L. Bretas, North Florida Research and Education Center, University of Florida, Marianna, FL, USA.
Email: [email protected]
Search for more papers by this authorHarley D. Naumann
University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorJose C. B. Dubeux Jr
University of Florida, North Florida Research and Education Center, Marianna, Florida, USA
Search for more papers by this authorJoao M. B. Vendramini
University of Florida, Range Cattle Research and Education Center, Ona, Florida, USA
Search for more papers by this authorHiran M. S. Silva
University of Florida, Range Cattle Research and Education Center, Ona, Florida, USA
Search for more papers by this authorEsteban Rios
University of Florida, Agronomy Department, Gainesville, Florida, USA
Search for more papers by this authorLuana M. D. Queiroz
University of Florida, North Florida Research and Education Center, Marianna, Florida, USA
Search for more papers by this authorThomas P. Mawhinney
University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorCorresponding Author
Igor L. Bretas
University of Florida, North Florida Research and Education Center, Marianna, Florida, USA
Correspondence
Igor L. Bretas, North Florida Research and Education Center, University of Florida, Marianna, FL, USA.
Email: [email protected]
Search for more papers by this authorHarley D. Naumann
University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorJose C. B. Dubeux Jr
University of Florida, North Florida Research and Education Center, Marianna, Florida, USA
Search for more papers by this authorJoao M. B. Vendramini
University of Florida, Range Cattle Research and Education Center, Ona, Florida, USA
Search for more papers by this authorHiran M. S. Silva
University of Florida, Range Cattle Research and Education Center, Ona, Florida, USA
Search for more papers by this authorEsteban Rios
University of Florida, Agronomy Department, Gainesville, Florida, USA
Search for more papers by this authorLuana M. D. Queiroz
University of Florida, North Florida Research and Education Center, Marianna, Florida, USA
Search for more papers by this authorThomas P. Mawhinney
University of Missouri, Columbia, Missouri, USA
Search for more papers by this authorAbstract
The geographical distribution of bermudagrass cultivars is limited by freezing events (<0°C), commonly associated with higher latitudes in the northern hemisphere. The lipid composition in the plant cell membranes is critical to promote persistence under freezing conditions. This study evaluated herbage accumulation (HA), nutritive value, and lipid biosynthesis of different bermudagrass cultivars in Ona, FL (27°26' N 82°55' W) and Marianna, FL (30o52' N 85o11' W), in 2 years. Treatments were five bermudagrass cultivars (Coastal, Tifton 44, Tifton 85, Jiggs, and Mislevy) distributed in a randomized complete block design with four replicates. HA was greater in Marianna than in Ona for all cultivars (p < 0.05). Mislevy and Jiggs had greater HA in Marianna than the others (p < 0.05), while all cultivars were similar in Ona (p > 0.05). There was no difference between locations or among the cultivars for crude protein and neutral detergent fibre, but bermudagrass cultivars had greater in vitro digestibility of organic matter (IVDOM) in Marianna than in Ona (p < 0.05). The concentration of unsaturated fatty acids increased in the northern latitude (Marianna; p < 0.05). Coastal had greater unsaturated fatty acid concentration than other cultivars (p < 0.05). Geographical location affects HA, IVDOM, and unsaturated fatty acid concentration of bermudagrass cultivars. The unsaturated fatty acid concentration plays a key role in acclimating bermudagrass to different thermal environments. Coastal showed great potential to tolerate chilling stress in Florida. Further studies may be developed to identify promising molecular markers for cold tolerance in bermudagrass.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Anderson, J. A., & Wu, Y. Q. (2011). Freeze tolerance of forage bermudagrasses: Bermudagrass freeze tolerance. Grass and Forage Science, 66(3), 449–452. https://doi.org/10.1111/j.1365-2494.2011.00802.x
- AOAC. (2019). Official Methods of analysis of AOAC INTERNATIONAL ( 21st ed.). AOAC INTERNATIONAL Official Method 969.30.
- Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., … Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/nclimate2470
- Clapham, W. M., Foster, J. G., Neel, J. P. S., & Fedders, J. M. (2005). Fatty acid composition of traditional and novel forages. Journal of Agricultural and Food Chemistry, 53(26), 10068–10073. https://doi.org/10.1021/jf0517039
- da Cruz, R. P., Golombieski, J. I., Bazana, M. T., Cabreira, C., Silveira, T. F., & da Silva, L. P. (2010). Alterations in fatty acid composition due to cold exposure at the vegetative stage in rice. Brazilian Journal of Plant Physiology, 22(3), 199–207. https://doi.org/10.1590/S1677-04202010000300007
10.1590/S1677-04202010000300007 Google Scholar
- De Vries, F. W. T. P., Brunsting, A. H. M., & Van Laar, H. H. (1974). Products, requirements, and efficiency of biosynthesis a quantitative approach. Journal of Theoretical Biology, 45(2), 339–377. https://doi.org/10.1016/0022-5193(74)90119-2
- De Vries, F. W. T. P., van Laar, H. H., & Chardon, M. C. M. (1983). Bioenergetics of growth of seeds, fruits and storage organs. In Proceedings of the Symposium on Potential Productivity of Field Crops under Different Environments, 23–26 September 1980, IRRI, Manila, Philippines (pp. 37–59). https://edepot.wur.nl/217761
- Dierking, R. M., Kallenbach, R. L., & Roberts, C. A. (2010). Fatty acid profiles of Orchardgrass, tall fescue, perennial ryegrass, and alfalfa. Crop Science, 50(1), 391–402. https://doi.org/10.2135/cropsci2008.12.0741
- Dong, C.-J., Cao, N., Zhang, Z.-G., & Shang, Q.-M. (2016). Characterization of the fatty acid desaturase genes in cucumber: Structure, phylogeny, and expression patterns. PLoS One, 11(3), e0149917. https://doi.org/10.1371/journal.pone.0149917
- Fontanier, C., Moss, J. Q., Gopinath, L., Goad, C., Su, K., & Wu, Y. (2020). Lipid composition of three bermudagrasses in response to chilling stress. Journal of the American Society for Horticultural Science, 145(2), 95–103. https://doi.org/10.21273/JASHS04815-19
- Gallaher, R. N., Weldon, C. O., & Futral, J. G. (1975). An aluminum block digester for plant and soil analysis. Soil Science Society of America Journal, 39(4), 803–806. https://doi.org/10.2136/sssaj1975.03615995003900040052x
- Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001
- Hill, G. M., Gates, R. N., & West, J. W. (2001). Advances in bermudagrass research involving new cultivars for beef and dairy production. Journal of Animal Science, 79(E-Suppl), E48. https://doi.org/10.2527/jas2001.79E-SupplE48x
10.2527/jas2001.79E-SupplE48x Google Scholar
- Hu, Z., Amombo, E., Gitau, M. M., Bi, A., Zhu, H., Zhang, L., Chen, L., & Fu, J. (2017). Changes of antioxidant defense system and fatty acid composition in bermudagrass under chilling stress. Journal of the American Society for Horticultural Science, 142(2), 101–109. https://doi.org/10.21273/JASHS03999-16
- Huang, S., Jiang, S., Liang, J., Chen, M., & Shi, Y. (2019). Current knowledge of bermudagrass responses to abiotic stresses. Breeding Science, 69(2), 215–226. https://doi.org/10.1270/jsbbs.18164
- Iba, K. (2002). Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annual review of plant biology, 53, 225–245.
- Johnson, C. R., Reiling, B. A., Mislevy, P., & Hall, M. B. (2001). Effects of nitrogen fertilization and harvest date on yield, digestibility, fiber, and protein fractions of tropical grasses. Journal of Animal Science, 79(9), 2439. https://doi.org/10.2527/2001.7992439x
- Los, D. A., & Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1666(1–2), 142–157. https://doi.org/10.1016/j.bbamem.2004.08.002
- Lyons, J. M., Wheaton, T. A., & Pratt, H. K. (1964). Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants. Plant Physiology, 39(2), 262–268. https://doi.org/10.1104/pp.39.2.262
- Matteucci, M., D'Angeli, S., Errico, S., Lamanna, R., Perrotta, G., & Altamura, M. M. (2011). Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. cultivars with different cold hardiness. Journal of Experimental Botany, 62(10), 3403–3420. https://doi.org/10.1093/jxb/err013
- Millar, A. A., Wrischer, M., & Kunst, L. (1998). Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. The Plant Cell, 10(11), 1889–1902.
- Moore, J. E., & Mott, G. O. (1974). Recovery of residual organic matter from in vitro digestion of forages. Journal of Dairy Science, 57(10), 1258–1259. https://doi.org/10.3168/jds.S0022-0302(74)85048-4
- O'Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511–1521. https://doi.org/10.2527/jas.2006-491
- Petrov, K. A., Dudareva, L. V., Nokhsorov, V. V., Perk, A. A., Chepalov, V. A., Sophronova, V. E., … Lee, C.-H. (2016). The role of plant fatty acids in regulation of the adaptation of organisms to the cold climate in cryolithic zone of yakutia. Journal of Life Science, 26(5), 519–530. https://doi.org/10.5352/JLS.2016.26.5.519
10.5352/JLS.2016.26.5.519 Google Scholar
- Ruelland, E., Vaultier, M.-N., Zachowski, A., & Hurry, V. (2009). Chapter 2 cold Signalling and cold acclimation in plants. In Advances in botanical research (Vol. 49, pp. 35–150). Elsevier. https://doi.org/10.1016/S0065-2296(08)00602-2
- Samala, S., Yan, J., & Baird, W. (1998). Changes in Polar lipid fatty acid composition during cold acclimation in ‘midiron’ and ‘U3’ bermudagrass. Crop Science, 38(1), 188–195. https://doi.org/10.2135/cropsci1998.0011183X003800010031x
- Sanchez, J. M. D., Vendramini, J. M. B., Sollenberger, L. E., Silveira, M. L., Dubeux, J. C. B., Moriel, P., Kuwahara, F. A., Cecato, U., Yarborough, J. K., Soares Filho, C. V., & Leite de Oliveira, F. C. (2018). Forage characteristics of bermudagrass pastures overseeded with Pintoi Peanut and grazed at different Stubble Heights. Crop Science, 58(4), 1808–1816. https://doi.org/10.2135/cropsci2018.01.0007
- Sanghera, S. G., Wani, H. S., Hussain, W., & Singh, B. N. (2011). Engineering cold stress tolerance in crop plants. Current Genomics, 12(1), 30–43. https://doi.org/10.2174/138920211794520178
- Shreve, B., Thiex, N., & Wolf, M. (2006). NFTA Reference Methods. National Forage Testing Association; Omaha, N.E., USA: 2006. National Forage Testing Association Reference Method: Dry Matter by Oven Drying for 3 Hours at 105°C.
- Silva, H. M. S., Vendramini, J. M. B., Leite de Oliveira, F. C., Soares Filho, C. V., Kaneko, M., Silveira, M. L., Dalmazo Sanchez, J. M., & Yarborough, J. K. (2020). Harvest frequency effects on herbage characteristics of ‘Mavuno’ brachiariagrass. Crop Science, 60(2), 1113–1122. https://doi.org/10.1002/csc2.20046
- Silva, V. J., Pedreira, C. G. S., Sollenberger, L. E., Carvalho, M. S. S., Tonato, F., & Basto, D. C. (2015). Seasonal herbage accumulation and nutritive value of irrigated ‘Tifton 85’, Jiggs, and vaquero bermudagrasses in response to harvest frequency. Crop Science, 55(6), 2886–2894. https://doi.org/10.2135/cropsci2015.04.0225
- Sinclair, T. R., Ray, J. D., Premazzi, L. M., & Mislevy, P. (2004). Photosynthetic photon flux density influences grass responses to extended photoperiod. Environmental and Experimental Botany, 51(1), 69–74. https://doi.org/10.1016/S0098-8472(03)00061-3
- Tilley, J. M. A., & Terry, R. A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
- Van Soest, P. J., Mertens, D. R., & Deinum, B. (1978). Preharvest factors influencing quality of conserved forage. Journal of Animal Science, 47(3), 712–720. https://doi.org/10.2527/jas1978.473712x
- Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in Relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Vendramini, J. M. B., Rios, E., Dubeux, J. C. B., Quesenberry, K., & Munoz, P. (2021). Registration of ‘Mislevy’ bermudagrass. Journal of Plant Registrations, 15(1), 7–15. https://doi.org/10.1002/plr2.20093
- Wada, H., Gombos, Z., & Murata, N. (1990). Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature, 347(6289), 200–203. https://doi.org/10.1038/347200a0
- Wilson, J. M. (1978). Lipid changes in plants at temperatures inducing chill-hardiness. Pesticide Science, 9(2), 173–183. https://doi.org/10.1002/ps.2780090215
- Wilson, J. M., & Crawford, R. M. M. (1974). The acclimatization of plants to chilling temperatures in relation to the fatty-acid composition of leaf polar lipids. New Phytologist, 73(5), 805–820. https://doi.org/10.1111/j.1469-8137.1974.tb01309.x
- Ximenes, E. A., Brandon, S. K., & Doran-Peterson, J. (2008). Evaluation of a Hypocrea jecorina enzyme preparation for hydrolysis of Tifton 85 bermudagrass. Applied Biochemistry and Biotechnology, 146(1–3), 89–100. https://doi.org/10.1007/s12010-007-8129-4
- Zamanian, M., Poureisa, M., & Baghbani-Arani, A. (2021). Change of fatty acid profiles in clover genotypes induced by cold stress. Journal of Plant Process and Function, 10(43), 65–74.
- Zhang, J.-X., Chen, M.-H., Gan, L., Zhang, C.-J., Shen, Y., Qian, J., Han, M.-L., Guo, Y.-X., & Yan, X.-B. (2020). Diversity patterns of bermuda grass along latitudinal gradients at different temperatures in southeastern china. Plants, 9(12), 1778. https://doi.org/10.3390/plants9121778
10.3390/plants9121778 Google Scholar
- Zhong, D., Du, H., Wang, Z., & Huang, B. (2011). Genotypic variation in fatty acid composition and unsaturation levels in bermudagrass associated with leaf dehydration tolerance. Journal of the American Society for Horticultural Science, 136(1), 35–40. https://doi.org/10.21273/JASHS.136.1.35