Platelets modulate CD4+ T-cell function in COVID-19 through a PD-L1 dependent mechanism
Ana Paletta
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorFacundo Di Diego García
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorAugusto Varese
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorFernando Erra Diaz
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorJulián García
División C, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
Search for more papers by this authorJuan Carlos Cisneros
Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
Search for more papers by this authorGuillermina Ludueña
Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Search for more papers by this authorIgnacio Mazzitelli
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorAndrea Pisarevsky
Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Search for more papers by this authorGonzalo Cabrerizo
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorÁlvaro López Malizia
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorAlejandra G. Rodriguez
Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
Search for more papers by this authorNicolás Lista
Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
Search for more papers by this authorYesica Longueira
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorJuan Sabatté
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorJorge Geffner
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorFederico Remes Lenicov
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorCorresponding Author
Ana Ceballos
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Correspondence
Ana Ceballos, INBIRS, Facultad de Medicina, Universidad de Buenos Aires C1121ABG, Ciudad de Buenos Aires, Argentina.
Emails: [email protected]; [email protected]
Search for more papers by this authorAna Paletta
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorFacundo Di Diego García
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorAugusto Varese
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorFernando Erra Diaz
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorJulián García
División C, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
Search for more papers by this authorJuan Carlos Cisneros
Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
Search for more papers by this authorGuillermina Ludueña
Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Search for more papers by this authorIgnacio Mazzitelli
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorAndrea Pisarevsky
Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Search for more papers by this authorGonzalo Cabrerizo
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorÁlvaro López Malizia
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorAlejandra G. Rodriguez
Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
Search for more papers by this authorNicolás Lista
Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
Search for more papers by this authorYesica Longueira
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorJuan Sabatté
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorJorge Geffner
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorFederico Remes Lenicov
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Search for more papers by this authorCorresponding Author
Ana Ceballos
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
Correspondence
Ana Ceballos, INBIRS, Facultad de Medicina, Universidad de Buenos Aires C1121ABG, Ciudad de Buenos Aires, Argentina.
Emails: [email protected]; [email protected]
Search for more papers by this authorAna Paletta and Facundo Di Diego García contributed equally to this work.
Funding information: This work was supported by grants from the ‘Fondo Nacional para la Investigación Científica y Tecnológica (FONCyT)’ (PICT 2017–1038 and IP-COVID to Ana Ceballos) and the Universidad de Buenos Aires (20020170100573BA to A.C).
Summary
Severe COVID-19 is associated with a systemic inflammatory response and progressive CD4+ T-cell lymphopenia and dysfunction. We evaluated whether platelets might contribute to CD4+ T-cell dysfunction in COVID-19. We observed a high frequency of CD4+ T cell–platelet aggregates in COVID-19 inpatients that inversely correlated with lymphocyte counts. Platelets from COVID-19 inpatients but not from healthy donors (HD) inhibited the upregulation of CD25 expression and tumour necrosis factor (TNF)-α production by CD4+ T cells. In addition, interferon (IFN)-γ production was increased by platelets from HD but not from COVID-19 inpatients. A high expression of PD-L1 was found in platelets from COVID-19 patients to be inversely correlated with IFN-γ production by activated CD4+ T cells cocultured with platelets. We also found that a PD-L1-blocking antibody significantly restored platelets’ ability to stimulate IFN-γ production by CD4+ T cells. Our study suggests that platelets might contribute to disease progression in COVID-19 not only by promoting thrombotic and inflammatory events, but also by affecting CD4+ T cells functionality.
CONFLICT OF INTERESTS
All authors report no potential conflicts.
Supporting Information
Filename | Description |
---|---|
bjh18062-sup-0001-FigureS1.jpgJPEG image, 854.4 KB |
Figure S1 |
bjh18062-sup-0002-FigureS2.jpgJPEG image, 1.6 MB |
Figure S2 |
bjh18062-sup-0003-FigureS3.jpgJPEG image, 403 KB |
Figure S3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–62.
- 2Song J-W, Zhang C, Fan X, Meng F-P, Xu Z, Xia P, et al. Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat Commun. 2020; 11(1): 3410.
- 3Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 2020; 130(9): 4694–703.
- 4De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020; 11(1): 3434.
- 5Zheng H-Y, Zhang M, Yang C-X, Zhang N, Wang X-C, Yang X-P, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020; 17(5): 541–3.
- 6Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506.
- 7Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen M-C, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020; 75(7): 1564–81.
- 8Rha M-S, Jeong HW, Ko J-H, Choi SJ, Seo I-H, Lee JS, et al. PD-1-expressing SARS-CoV-2-specific CD8+ T cells are not exhausted, but functional in patients with COVID-19. Immunity. 2021; 54(1): 44-52.e3.
- 9Sattler A, Angermair S, Stockmann H, Heim KM, Khadzhynov D, Treskatsch S, et al. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest. 2020; 130(12): 6477–89.
- 10Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 2020; 5(1): 128.
- 11Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020; 136(11): 1317–29.
- 12Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pão CRR, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020; 136(11): 1330–41.
- 13Koupenova M, Freedman JE. Platelets and COVID-19: inflammation, hyperactivation and additional questions. Circ Res. 2020; 127(11): 1419–21.
- 14Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, Resta M, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020 Jul; 18(7): 1747–51.
- 15Tan S, Li S, Min Y, Gisterå A, Moruzzi N, Zhang J, et al. Platelet factor 4 enhances CD4+ T effector memory cell responses via Akt-PGC1α-TFAM signaling-mediated mitochondrial biogenesis. J Thromb Haemost. 2020; 18(10): 2685–700.
- 16Carestia A, Mena HA, Olexen CM, Ortiz Wilczyñski JM, Negrotto S, Errasti AE, et al. Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice. Cell Rep. 2019; 28(4): 896-908.e5.
- 17Zamora C, Cantó E, Nieto JC, Ortiz MA, Diaz-Torné C, Diaz-Lopez C, et al. Functional consequences of platelet binding to T lymphocytes in inflammation. J Leukoc Biol. 2013 Sep; 94(3): 521–9.
- 18Gerdes N, Zhu L, Ersoy M, Hermansson A, Hjemdahl P, Hu H, et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost. 2011; 106(2): 353–62.
- 19Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost. 2015; 114(3): 449–58.
- 20Starossom SC, Veremeyko T, Yung AWY, Dukhinova M, Au C, Lau AY, et al. Platelets play differential role during the initiation and progression of autoimmune neuroinflammation. Circ Res. 2015; 117(9): 779–92.
- 21Kraemer BF, Campbell RA, Schwertz H, Cody MJ, Franks Z, Tolley ND, et al. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog. 2011; 7(11):e1002355.
- 22Tang Y-Q, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun. 2002; 70(12): 6524–33.
- 23Auerbach DJ, Lin Y, Miao H, Cimbro R, Difiore MJ, Gianolini ME, et al. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor. Proc Natl Acad Sci USA. 2012; 109(24): 9569–74.
- 24Mazzitelli I, Bleichmar L, Ludueña MG, Pisarevsky A, Labato M, Chiaradia V, et al. IgG immune complexes may contribute to neutrophil activation in the course of severe COVID-19. J Infect Dis. 2021; 224(4): 575–85.
- 25 WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis. 2020; 20(8): e192–7.
- 26Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5): 525–7.
- 27Erra Díaz F, Ochoa V, Merlotti A, Dantas E, Mazzitelli I, Gonzalez Polo V, et al. Extracellular acidosis and mTOR inhibition drive the differentiation of human monocyte-derived dendritic cells. Cell Rep. 2020; 31(5): 107613.
- 28Yun S-H, Sim E-H, Goh R-Y, Park J-I, Han J-Y. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016; 2016:9060143.
- 29Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018; 18(2): 91–104.
- 30Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019; 18(1): 10.
- 31Zaslavsky AB, Adams MP, Cao X, Maj T, Choi JE, Stangl-Kremser J, et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci Rep. 2020; 10(1): 19296.
- 32Rondina MT, Schwertz H, Harris ES, Kraemer BF, Campbell RA, Mackman N, et al. The septic milieu triggers expression of spliced tissue factor mRNA in human platelets. J Thromb Haemost. 2011; 9(4): 748–58.
- 33Olwal CO, Nganyewo NN, Tapela K, Djomkam Zune AL, Owoicho O, Bediako Y, et al. Parallels in sepsis and COVID-19 conditions: implications for managing severe COVID-19. Front Immunol. 2021; 12: 602848.
- 34Schechter ME, Andrade BB, He T, Richter GH, Tosh KW, Policicchio BB, et al. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Sci Transl Med. 2017; 30: 9(405).
- 35Rolfes V, Idel C, Pries R, Plötze-Martin K, Habermann J, Gemoll T, et al. PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy. Oncotarget. 2018; 9(44): 27460–70.
- 36Hotchkiss RS, Colston E, Yende S, Crouser ED, Martin GS, Albertson T, et al. Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med. 2019; 45(10): 1360–71.
- 37Sabbatino F, Conti V, Franci G, Sellitto C, Manzo V, Pagliano P, et al. PD-L1 dysregulation in COVID-19 Patients. Front Immunol. 2021; 12: 695242.