Ultrafine Starch Particles as Pickering Emulsion Stabilizers With Different Interfacial Behaviors
Weijun Deng
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
Fujian Key Laboratory of Leather Green Design and Manufacture, Jinjiang, Fujian, 362271 P. R. China
Better Way (Shanghai) Cosmetics Co. Ltd., Shanghai, 201403 P. R. China
Search for more papers by this authorJing Hu
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
Search for more papers by this authorMengqing Rong
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
Search for more papers by this authorChaoqun Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 P. R. China
Search for more papers by this authorHuitao Wen
Fujian Key Laboratory of Leather Green Design and Manufacture, Jinjiang, Fujian, 362271 P. R. China
Search for more papers by this authorYue Liu
Better Way (Shanghai) Cosmetics Co. Ltd., Shanghai, 201403 P. R. China
Search for more papers by this authorCorresponding Author
Tao Zhang
Better Way (Shanghai) Cosmetics Co. Ltd., Shanghai, 201403 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Hu
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWeijun Deng
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
Fujian Key Laboratory of Leather Green Design and Manufacture, Jinjiang, Fujian, 362271 P. R. China
Better Way (Shanghai) Cosmetics Co. Ltd., Shanghai, 201403 P. R. China
Search for more papers by this authorJing Hu
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
Search for more papers by this authorMengqing Rong
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
Search for more papers by this authorChaoqun Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 P. R. China
Search for more papers by this authorHuitao Wen
Fujian Key Laboratory of Leather Green Design and Manufacture, Jinjiang, Fujian, 362271 P. R. China
Search for more papers by this authorYue Liu
Better Way (Shanghai) Cosmetics Co. Ltd., Shanghai, 201403 P. R. China
Search for more papers by this authorCorresponding Author
Tao Zhang
Better Way (Shanghai) Cosmetics Co. Ltd., Shanghai, 201403 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Hu
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Native starch Pickering stabilizer without chemical modification has attracted research interest in food field. However, the behaviors of starch particles at interface are seldom studied. In this paper, ultrafine starch particles (USPs) are grounded with a planetary ball mall from various starch species down to 1–2 µm in size. USP and starches are used to prepare Pickering emulsions. With size decrease, USP has more negative zeta potentials, stronger hydrogen bonds, better hydrophilicity, and better emulsifying abilities than their counterparts of starches. Millet starch has better emulsion stability than OSA modified starch. Glutinous USP outperforms in stabilization due to higher emulsion height and no oil phase separation. USP behaves differently at interface or in water phase, which is attributed to starch species, amylose and amylopectin contents, and gelatinization. This work can inspire the behavior investigation of starch particles in nano/micrometers at interface during storage.
Conflict of Interest
The authors declare that they have no conflict of intrest.
Open Research
Data Availability Statement
Data will be made available on request. The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
star202400028-sup-0001-SuppMat.docx6.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Xiao, Y. Li, Q. Huang, Trends Food Sci. Technol. 2016, 55, 48.
- 2H. Jiang, Y. Sheng, T. Ngai, Curr. Opin. Colloid Interface Sci. 2020, 49, 1.
- 3C. C. Berton-Carabin, L. Sagis, K. Schroen, Annu. Rev. Food Sci. Technol. 2018, 9, 551.
- 4X. H. Gao, L. Ma, C. Cheng, P. J. Liu, H. R. Liang, Q. L. Z. W. Liu, J. D. McClements, Trends Food Sci. Technol. 2021, 112, 36.
- 5H. Lu, Y. Tian, J. Agric. Food Chem. 2021, 69, 6929.
- 6J. Hu, P. Du, R. Xu, W. Den, Food Chem. 2022, 396, 133675.
- 7S. Zhang, D. Dedovets, A. Feng, K. Wang, M. Pera-Titus, J. Am. Chem. Soc. 2022, 144, 1729.
- 8X. Zhang, Y. Hou, R. Ettelaie, R. Guan, M. Zhang, Y. Zhang, H. Yang, J. Am. Chem. Soc. 2019, 141, 5220.
- 9H. Wang, K. Lin, B. Jing, G. Krylova, E. G. Sigmon, P. McGinn, Y. Zhu, C. Na, Water Res. 2013, 47, 4198.
- 10J. Hu, P. Du, R. Xu, W. Deng, J. Agric. Food Chem. 2021, 69, 14893.
- 11P. Aussillous, D. Quere, Nature 2001, 411, 924.
- 12A. Sarkar, E. Dickinson, Curr. Opin. Colloid Interface Sci. 2020, 49, 69.
- 13E. Dickinson, Food Hydrocoll. 2009, 23, 1473.
- 14C. Albert, M. Beladjine, N. Tsapis, E. Fattal, F. Agnely, N. Huang, J. Control. Release 2019, 309, 302.
- 15L. Amagliani, J. O'Regan, L. A. Kelly, A. J. O'Mahony, J. Cereal Sci. 2016, 70, 291.
- 16J. D. Manners, Carbohydr. Polym. 1989, 11, 87.
- 17R. Hoover, Carbohydr. Polym 2001, 45, 253.
- 18C. Guida, C. A. Aguiar, L. R. Cunha, Curr. Opin. Food Sci. 2021, 38, 52.
- 19F. Zhu, Trends Food Sci. Technol. 2019, 85, 129.
- 20M. Rayner, A. Timgren, M. Sjöö, P. Dejmek, J. Sci. Food Agric. 2012, 92, 1841.
- 21M. Mu, P. Karthik, J. Chen, M. Holmes, R. Ettelaie, Food Hydrocoll. 2021, 111, 106363.
- 22J. Li, Q. Wang, A. Blennow, K. Herburger, C. Zhu, S. Nurzikhan, J. Wei, Y. Zhong, D. Guo, LWT 2022, 169, 113892.
- 23T. Xu, C. Jiang, Z. Huang, Z. Gu, L. Cheng, Y. Hong, Carbohydr. Polym. 2023, 299, 120149.
- 24Y. Liu, C. Yan, J. Chen, Y. Wang, R. Liang, L. Zou, W. Liu, Food Hydrocoll. 2020, 109, 106083.
- 25J.-L. Jane, T. Kasemsuwan, S. Leas, H. Zobel, F. J. Robyt, Starch–Stärke 1994, 46, 121.
- 26A. Timgren, M. Rayner, P. Dejmek, D. Marku, M. Sjöö, Food Sci. Nutr. 2013, 1, 157.
- 27X. Lu, Q. Huang, J. Agric. Food Chem. 2020, 68, 292.
- 28X. Lu, Y. Wang, Y. Li, Q. Huang, Food Hydrocoll. 2018, 84, 47.
- 29R. Yulianingsih, S. Gohtani, Food Hydrocoll. 2019, 95, 476.
- 30FDA. 2018, https://www.fda.gov/science-research/nanotechnology-programs-fda/center-food-safety-and-applied-nutrition-nanotechnology-programs (accessed: December 2023).
- 31K. Kamwilaisak, K. Rittiwut, P. Jutakridsada, W. Iamamorphanth, N. Pimsawat, N. T. J. Knijnenburg, S. Theerakulpisut, Int. J. Biol. Macromol. 2022, 214, 370.
- 32R. Wang, J. Zhou, Carbohydr. Polym. 2022, 296, 119991.
- 33S. Ge, L. Xiong, M. Li, J. Liu, J. Jie Yang, R. Chang, C. Liang, Q. Sun, Food Chem. 2017, 234, 339.
- 34C. K. Huber, N. J. BeMiller, Carbohydr. Polym. 2000, 41, 269.
- 35H. Saari, K. Heravifar, M. Rayner, M. Wahlgren, M. Sjöö, Cereal Chem. 2016, 93, 116.
- 36M. C. Patel, M. Chakraborty, P. V. Z. Murthy, Adv. Powder Technol. 2016, 27, 1287.
- 37G. Zhou, Z. Luo, X. Fu, Ind. Crops Prod. 2014, 52, 105.
- 38M. Kačuráková, H. R. Wilson, Carbohydr. Polym. 2001, 44, 291.
- 39X. Li, N. Ji, M. Li, S. Zhang, L. Xiong, Q. Sun, J. Agric. Food Chem. 2017, 65, 7955.
- 40M. J. Fang, A. P. Fowler, C. Sayers, A. P. Williams, Carbohydr. Polym. 2004, 55, 283.
- 41T. M. Soe, P. Chitropas, T. Pongjanyakul, E. Limpongsa, N. Jaipakdee, Carbohydr. Polym. 2020, 232, 115812.
- 42J. Dupont, J. P. White, P. M. Carpenter, J. E. Schaefer, N. S. Meydani, E. C. Elson, M. Woods, L. S. Gorbach, J. Am. Coll. Nutr. 1990, 9, 438.
- 43J. D. McClements, Adv. Nutr. 2015, 6, 338SS.
10.3945/an.114.006999 Google Scholar
- 44B. P. Binks, S. O. Lumsdon, Langmuir 2001, 17, 4540.
- 45E. Dickinson, Trends Food Sci. Technol. 2012, 24, 4.
- 46R. Jia, C. Cui, L. Gao, Y. Qin, N. Ji, L. Dai, Y. Wang, L. Xiong, R. Shi, Q. Sun, Carbohydr. Polym. 2023, 321, 121260.
- 47G. P. Desam, J. Li, G. Chen, O. Campanella, G. Narsimhan, J. Food Eng. 2018, 222, 237.
- 48R. Parker, G. S. Ring, J. Cereal Sci. 2001, 34, 1.
- 49J. P. Jenkins, M. A. Donald, Carbohydr. Res. 1998, 308, 133.
- 50H.-J. Chung, Q. Liu, L. Lee, D. Wei, Food Hydrocoll. 2011, 25, 968.
- 51H. Wang, N. Xiao, X. Wang, X. Zhao, H. Zhang, Food Chem. 2019, 283, 248.
- 52B. Zhang, B. Bai, Y. Pan, X. Li, J. Cheng, H. Chen, Food Chem. 2018, 264, 58.
- 53P. Mahajan, B. M. Bera, S. P. Panesar, A. Chauhan, Int. J. Biol. Macromol. 2021, 180, 61.
- 54H. Dun, H. Liang, S. Li, B. Li, F. Geng, Food Hydrocoll. 2021, 113, 106547.