Synthesis of Novel Antimicrobial and Food-Preserving Hydrogel Nanocomposite Films Based on Carboxymethylcellulose
Noura Y. Elmehbad
Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
Search for more papers by this authorCorresponding Author
Nadia A. Mohamed
Department of Chemistry, College of Science, Qassim University, Buraidah, 51452 Saudi Arabia
Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Nahed A. Abd El-Ghany
Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
E-mail: [email protected]; [email protected]
Search for more papers by this authorNoura Y. Elmehbad
Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
Search for more papers by this authorCorresponding Author
Nadia A. Mohamed
Department of Chemistry, College of Science, Qassim University, Buraidah, 51452 Saudi Arabia
Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Nahed A. Abd El-Ghany
Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The microbial resistance to the traditional antibiotics causes serious health problems and increases day by day. Thus, there is a pressing need to discover alternative antimicrobial agents of different nature than that of the conventional antibiotics. For this, novel hydrogel nanocomposite films are prepared by chemical crosslinking grafting of carboxymethyl cellulose with N,N′-methylene-bis-acrylamide (CMC-g-MBA), which subsequently followed by loading two different weight ratios of titanium oxide nanoparticles (TiO2NPs), such as 3% (CMC-g-MBA/TiO2NPs-3%) and 5% (CMC-g-MBA/TiO2NPs-5%) wt%. Their chemical structure and surface morphology are confirmed using appropriate analytical techniques. Their antimicrobial activity can be arranged as follows: CMC-g-MBA/TiO2NPs-5% composite > CMC-g-MBA/TiO2NPs-3% composite > CMC-g-MBA hydrogel. While, the native CMC has no observable antimicrobial effect. CMC-g-MBA/TiO2NPs-3% composite imparts good barrier properties to the coated tomato fruits, delaying their spoilage and protecting them from the environmental microbes compared to the uncoated ones. CMC-g-MBA/TiO2NPs-5% composite is safe on the normal human cells. Thus, incorporation of both MBA and TiO2NPs into CMC greatly develops its antimicrobial activity and provides a wonderful approach to attain promising materials that can efficiently compete with conventional antibiotics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1R. P. Babu, K. O'Connor, R. Seeram, Prog. Biomater. 2013, 2, 8.
- 2M. M. Abdel-Aziz, M. H. Abu Elella, R. R. Mohamed, Int. J. Biol. Macromol. 2020, 142, 244.
- 3M. H. Abu Elella, M. W. Sabaa, D. Hanna, M. Abdel-Aziz, R. Mohamed, J. Drug Deliv. Sci. Technol. 2020, 57, 101673.
- 4C. I. Gkountela, S. N. Vouyiouka, Macromol 2022, 2, 30.
- 5M. H. Abu Elella, A. E. Shalan, M. W. Sabaa, R. R. Mohamed, RSC Adv. 2022, 12, 1095.
- 6N. A. Abd El-Ghany, M. H. Abu Elella, in Food Packaging Films Generated from 2D Biopolymer-Based Nanocomposites: An Overview, Nova, Science and Technology, New York 2022 Ch. 3.
- 7N. A. Mohamed, N. A. Abd El-Ghany, M. M. Abdel-Aziz, Int. J. Biol. Macromol. 2021, 181, 956.
- 8R. Akhter, F. Masoodi, T. Wani, S. Rather, Int. J. Biol. Macromol. 2019, 137, 1245.
- 9M. Maruthapandi, A. Saravanan, A. Gupta, J. H. T. Luong, A. Gedanken, Macromol 2022, 2, 78.
- 10N. A. Abd El-Ghany, M. S. Abdel Aziz, M. M. Abdel-Aziz, Z. M. Mahmoud, Cellulose Chem. Technol. 2023, 57, 803.
- 11M. Bustamante-Torres, B. Arcentales-Vera, J. Estrella-Nuñez, H. Yánez-Vega, E. Bucio, Macromol 2022, 2, 258.
- 12N. A. Abd El-Ghany, J. Carbohydr. Chem. 2017, 36, 31.
- 13M. H. Abu Elella, R. R. Mohamed, M. M. Abdel-Aziz, M. W. Sabaa, Int. J. Biol. Macromol. 2018, 111, 706.
- 14M. S. Rahman, M. S. Hasan, A. S. Nitai, S. Nam, A. K. Karmakar, M. S. Ahsan, M. J. A. Shiddiky, M. B. Ahmed, Polymers 2021, 13, 1345.
- 15M. H. Abu Elella, in Food Packaging: Safety, Management and Quality, Nova, Science and Technology, Hauppauge, NY, USA 2023 Ch. 4.
- 16Y. Liu, S. Ahmed, D. E. Sameen, Y. Wang, R. Lu, J. Dai, S. Li, W. Qin, Trends Food Sci. Technol. 2021, 112, 532.
- 17N. A. Abd El-Ghany, M. H. Abu Elella, in Materials Science and Engineering in Food Product Development, Wiley, Hoboken, New Jersey, USA 2023
10.1002/9781119860594.ch1 Google Scholar
- 18N. A. Mohamed, N. F. Al-Harby, M. S. Almarshed, Int. J. Biol. Macromol. 2019, 132, 416.
- 19J. Y. Al-Humaidi, S. M. Gomha, N. A. Abd El-Ghany, B. Farag, M. E. A. Zaki, T. Z. Abolibda, N. A. Mohamed, Catalysts 2023, 13, 1311.
- 20N. A. Abd ElGhany, Z. M. Mahmoud, Polym. Bull. 2021, 78, 6161.
- 21L. Rebers, R. Reichsöllner, S. Regett, G. E. M. Tovar, K. Borchers, S. Baudis, A. Southan, Sci. Rep. 2021, 11, 3256.
- 22A. M. Elgamal, N. A. Abd El-Ghany, G. R. Saad, Int. J. Biol. Macromol. 2023, 227, 27.
- 23N. A. Mohamed, N. A. Abd El-Ghany, Int. J. Biol. Macromol. 2018, 115, 651.
- 24N. F. Al-Harby, R. S. Almutairi, N. Y. Elmehbad, N. A. Mohamed, Polym. Eng. Sci. 2023, 63, 2336.
- 25R. Suriyate, R. A. Auras, P. Rachtanapun, J. Polym. Environ. 2019, 27, 286.
- 26W. Zhang, Y. Zhang, J. Cao, W. Jiang, Int. J. Biol. Macromol. 2021, 166, 288.
- 27R. T. Alfuraydi, N. F. Al-Harby, F. M. Alminderej, N. Y. Elmehbad, N. A. Mohamed, Gels 2023, 9, 882.
- 28N. Y. Elmehbad, N. A. Mohamed, Int. J. Biol. Macromol. 2020, 151, 92.
- 29R. T. Alfuraydi, F. M. Alminderej, N. A. Mohamed, Polymers 2022, 14, 1619.
- 30A. S. Doghish, A. H. Hashem, A. Shehabeldine, A. M. Sallam, G. ElSayyad, S. S. Salem, J. Drug Deliv. Sci. Technol. 2022, 77, 103874.
- 31A. Zafar, M. K. Khosa, A. Noor, S. Qayyum, M. J. Saif, Polymers 2022, 14, 5201.
- 32R. A. Alharbi, F. M. Alminderej, N. F. Al-Harby, N. Y. Elmehbad, N. A. Mohamed, Polymers 2023, 15, 980.
- 33N. Y. Elmehbad, N. A. Mohamed, N. A. Abd El-Ghany, M. M. Abdel-Aziz, Int. J. Biol. Macromol. 2023, 246, 125582.
- 34I. A. Alhagri, T. F. Qahtan, M. O. Farea, A. N. Al-Hakimi, S. M. Al-Hazmy, S. El-Sayed Saeed, A. E. A. E. Albadri, Polymers 2023, 15, 384.
- 35N. Y. Elmehbad, N. A. Mohamed, N. A. Abd El-Ghany, Int. J. Biol. Macromol. 2022, 205, 719.
- 36E. M. Bakhsh, S. B. Khan, N. Maslamani, E. Y. Danish, K. Akhtar, A. M. Asiri, Polymers 2023, 15, 1502.
- 37N. Y. Elmehbad, N. A. Mohamed, N. A. Abd El-Ghany, Int. J. Biol. Macromol. 2023, 253, 127277.
- 38S. Liu, X. Chen, M. Yu, J. Li, J. Liu, Z. Xie, F. Gao, Y. Liu, Molecules 2022, 27, 3881.
- 39R. K. Pandey, V. K. Prajapati, Int. J. Biol. Macromol. 2018, 107, 1278.
- 40Z. Razzaq, A. Khalid, P. Ahmad, M. Farooq, M. U. Khandaker, A. Sulieman, I. U. Rehman, S. Shakeel, A. Khan, Catalysts 2021, 11, 709.
- 41R. R. Dubey, W. B. Gurnule, IJARSCT 2021, 12, 418.
10.48175/IJARSCT-2409 Google Scholar
- 42N. A. Abd El-Ghany, M. H. Abu Elella, H. M. Abdallah, M. S. Mostafa, M. Samy, J. Polym. Environ. 2023, 31, 2792.
- 43M. R. Amiri, M. Alavi, M. Taran, D. Kahrizi, J. Public Health Res. (JPHR) 2022, 11, 1.
- 44E. Farshchi, S. Pirsa, L. Roufegarinejad, M. Alizadeh, M. Rezazad, Carbohydr. Polym. 2019, 216, 189.
- 45L. M. Anaya-Esparza, Z. Villagrán-de la Mora, J. M. Ruvalcaba-Gómez, R. Romero-Toledo, T. Sandoval-Contreras, S. Aguilera-Aguirre, E. Montalvo-González, A. Pérez-Larios, Processes 2020, 8, 1395.
- 46Y. Xiang, X. Liu, C. Mao, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, Y. Zheng, Y. S. Wu, Mater. Sci. Eng. C 2018, 85, 214.
- 47T. Mosmann, J. Immunol. Methods 1983, 65, 55.
- 48N. F. Al-Harby, M. S. Almarshed, N. A. Mohamed, Cellul. Chem. Technol. 2023, 57, 445.
- 49A. Abdulhameed, H. M. Mbuvi, E. O. Changamu, F. M. Maingi, IOSR J. Appl. Chem. 2019, 12, 33.
- 50J. Liu, H. Jee, M. Lim, J. H. Kim, S. J. Kwon, K. M. Lee, E. Z. Nezhad, S. Bae, Materials 2020, 13, 5423.
- 51B. Kumar, R. Priyadarshi, Sauraj, F. Deeba, A. Kulshreshtha, K. K. Gaikwad, J. Kim, A. Kumar, Y. S. Negi, Gels 2020, 6, 49.
- 52N. F. Attia, A. M. Zakria, M. A. Nour, N. A. Abd El-Ghany, S. E. A. Elashery, Mater. Today Sustain. 2023, 23, 100450.
- 53C. A. Juan, J. M. Pérez de la Lastra, F. J. Plou, E. Pérez-Lebeña, Int. J. Mol. Sci. 2021, 22, 4642.
- 54J. N. Moloney, T. G. Cotter, Cell Dev. Biol. 2018, 80, 50.
- 55L. F. Ballesteros, J. A. Teixeira, M. A. Cerqueira, Horticulturae 2022, 8, 936.
10.3390/horticulturae8100936 Google Scholar
- 56N. Y. Elmehbad, N. A. Mohamed, Polym. Bull. 2022, 79, 9345.
- 57A. B. Younis, V. Milosavljevic, T. Fialova, K. Smerkova, H. Michalkova, P. Svec, P. Antal, P. Kopel, V. Adam, L. Zurek, K. Dolezelikova, BMC Microbiol. 2023, 23, 207.
- 58E. Asiamah, W. Arthur, V. Kyei-Barfour, F. Sarpong, H. K. Ketemepi, Bioact. Carbohydr. Diet. Fibre 2023, 30, 100373.
- 59K. A. Shiekh, K. Ngiwngam, W. Tongdeesoontorn, Coatings 2022, 12, 8.