Acid Hydrolyzed Pearl Millet Starch Nanoparticles: Synthesis and Characterization
Prafull Chavan
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
Search for more papers by this authorArchana Sinhmar
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
Search for more papers by this authorRahul Thory
Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab, 143005 India
Search for more papers by this authorCorresponding Author
Somesh Sharma
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorSakshi Sukhija
Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorGurvendra Pal Singh
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
Food, Nutrition and Health Program, Faculty of Land and Food System, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorKrishna Aayush
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
Food, Nutrition and Health Program, Faculty of Land and Food System, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorJay Singh
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005 India
Search for more papers by this authorCorresponding Author
Deepak Kumar
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorPrafull Chavan
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
Search for more papers by this authorArchana Sinhmar
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
Search for more papers by this authorRahul Thory
Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab, 143005 India
Search for more papers by this authorCorresponding Author
Somesh Sharma
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorSakshi Sukhija
Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorGurvendra Pal Singh
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
Food, Nutrition and Health Program, Faculty of Land and Food System, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorKrishna Aayush
School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229 India
Food, Nutrition and Health Program, Faculty of Land and Food System, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorJay Singh
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005 India
Search for more papers by this authorCorresponding Author
Deepak Kumar
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The amylose content in native starch is reduced through hydrolysis, impacting its physicochemical properties. Starch nanoparticles exhibit enhanced water and oil absorption capacities, attributed to increased hydrolysis and subsequently higher solubility. Moreover, the swelling power of starch nanoparticles is notably higher, indicating improved functionality. Pasting properties are altered, with reduced peak viscosity, breakdown viscosity, and setback viscosity in modified starches. Dynamic light scattering reveals a significant reduction in particle size for starch nanoparticles compared to native starch. Morphological analysis using field emission-scanning electron microscopy (FE-SEM) highlights distinct granule shapes and surfaces between the two starch types. The X-ray diffraction patterns confirm an A-type crystalline structure in both native and modified starches. Fourier transform infrared (FTIR) spectroscopy verifies no significant difference in functional groups due to extraction or hydrolysis methods. This comprehensive investigation provides valuable insights into the chemical modification of pearl millet starch, shedding light on its potential applications in various industries, including food and pharmaceuticals.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
- 1T. Thilagavathi, S. Kanchana, P. Banumathi, G. Hemalatha, C. Vanniarajan, M. Sundar, M. Ilamaran, Indian J. Sci. Technol. 2015, 8, 147.
- 2D. Raheem, M. Dayoub, R. Birech, A. Nakiyemba, Urban Sci. 2021, 5, 8.
10.3390/urbansci5010008 Google Scholar
- 3S. Goswami, P. Asrani, T. P. Ansheef Ali, R. D. Kumar, T. Vinutha, K. Veda, S. Praveen, Food Anal. Methods 2020, 13, 2147.
- 4T. Longvah, I. An̲antan̲, K. Bhaskarachary, K. Venkaiah, T. Longvah, Indian Coun. Med. Res. 2017, 2.
- 5V. Gupta, A. P. Singh, N. Gupta, Just Agric. 2022, 2, 2582.
- 6S. Punia, Int. J. Biol. Macromol. 2020, 155, 868.
- 7L. Wang, Y. J. Wang, Starch–Starke 2001, 53, 570.
- 8S. L. Amaya-Llano, F. Martinez-Bustos, A. L. Martinez Alegria, J. de Jesus Zazueta-Morales, Food Bioproc. Technol. 2011, 4, 48.
- 9K. S. Sandhu, N. Singh, S.T Lim, LWT – Food Sci. Technol. 2007, 40, 1527.
- 10H. Singh, Y. H. Chang, N. S. Sodhi, N. Singh, Starch–Starke 2011, 63, 291.
- 11H. Singh, N. S. Sodhi, N. Singh, Int. J. Food Prop. 2009, 12, 713.
- 12S. Wang, L. Copeland, Starch–Starke 2012, 64, 538.
- 13D. Thirathumthavorn, S. Charoenrein, Starch–Starke 2005, 57, 217.
- 14M. Pratiwi, D. N. Faridah, H. N. Lioe, Starch–Starke 2018, 70, 1700028.
- 15A. T. Osunsam, J. O. Akingbala, G. B. Oguntimein, Starch–Starke 1989, 41, 54.
- 16P. H. Yiu, S. L. Loh, A. Rajan, S. C. Wong, C. F. J. Bong, Am. J. Appl. Sci. 2008, 5, 307.
- 17D. French, Starch: Chemistry and Technology, Academic Press, New York 1984.
10.1016/B978-0-12-746270-7.50013-6 Google Scholar
- 18T. Komiya, S. Nara, Starch–Starke 1986, 38, 9.
- 19J. Chun, S. Lim, Y. Takeda, M. Shoki, Cereal Food World 1997, 42, 813.
- 20R. E. Kim, S. Y. Ahn, Agric. Chem. Biotechnol. 1996, 39, 49.
- 21L. Jayakody, R. Hoover, Food Res. Int. 2002, 35, 665.
- 22E. B. Ko, J. Y. Kim, Food Hydrocoll. 2021, 120, 106984.
- 23C. Qiu, Y. Hu, Z. Jin, D. J. McClements, Y. Qin, X. Xu, J. Wang, Trends Food Sci. Technol. 2019, 92, 138.
- 24V. Sessini, M. P. Arrieta, J. M. Kenny, L. Peponi, Polym. Degrad. Stab. 2016, 132, 157.
- 25N. Lin, J. Huang, P. R. Chang, D. P. Anderson, J. Yu, J. Nanomater. 2011, 1.
- 26A. K. Maryam, E. Novelina, IOP Conf. Earth Environ. Sci. 2019, 258, 012046.
10.1088/1755-1315/258/1/012046 Google Scholar
- 27K. S. Sandhu, N. Singh, N. S. Malhi, Food Chem. 2005, 89, 541.
- 28H. Y. Kim, J. H. Lee, J. Y. Kim, W. J. Lim, S. T. Lim, Starch–Starke 2012, 64, 367.
- 29P. C. Williams, F. D. Kuzina, I. Hlynka, Cereal Chem. 1970, 1, 413.
- 30H. W. Leach, L. D. Mc Cowen, T. J. Schoch, Cereal Chem. 1959, 36, 534.
- 31F. W. Sosulki, Food Sci. Technol. 1976, 52, 142.
- 32S. Sukhija, S. Singh, C. S. Riar, Starch–Starke 2016, 68, 160.
- 33S. Sun, C. Wei, Z. Zhu, Y. Hou, S. S. Venkatraman, Z. Xu, Chin. Phys. B 2014, 23, 037503.
- 34K. Pal, A. K. Banthia, D. K. Majumdar, Mater. Lett. 2008, 62, 215.
- 35P. Chavan, A. Sinhmar, M. Nehra, R. Thory, A. K. Pathera, A. A. Sundarraj, V. Nain, Food Chem. 2021, 364, 130416.
- 36P. C. Williams, F. D. Kuzina, I. Hlynka, Cereal Chem. 1970, 47, 411.
- 37J. M. Bailey, W. J. Whelan, J. Biol. Chem. 1961, 236, 969.
- 38D. LeCorre, J. Bras, A. Dufresne, J. Nanoparticle Res. 2011, 13, 7193.
- 39H. Y. Kim, S. S. Park, S. T. Lim, Colloids Surf. B 2015, 126, 607.
- 40D. Bajer, Food Chem. 2023, 402, 134489.
- 41A. Ali, T. A. Wani, I. A. Wani, F. A. Masoodi, J. Saudi Soc. Agric. Sci. 2016, 15, 75.
10.1016/j.jssas.2014.04.002 Google Scholar
- 42M. Ahmad, A. Gani, I. Hassan, Q. Huang, H. Shabbir, Sci. Rep. 2020, 10, 1.
- 43L. Kong, C. Lee, S. H. Kim, G. R. Ziegler, J. Phys. Chem. B 2014, 118, 1775.
- 44X. Han, H. Wen, Y. Luo, J. Yang, W. Xiao, X. Ji, J. Xie, Food Hydrocoll. 2021, 116, 1.
10.1016/j.foodhyd.2021.106661 Google Scholar
- 45G. J. Fadimu, M. K. Adenekan, O. Akinlua, F. Al Juhaimi, K. Ghafoor, E. E. Babiker, Qual. Assur. Saf. Crops Foods 2018, 10, 423.
- 46F. Jhan, A. Gani, N. Noor, Z. U. Ashraf, A. Gani, A. Shah, Sci. Rep. 2021, 11, 4873.
- 47U. Shah, A. Gani, B. A. Ashwar, A. Shah, I. A. Wani, F. A. Masoodi, Int. J. Biol. Macromol. 2016, 84, 166.
- 48J. Loksuwan, Food Hydrocoll. 2007, 21, 928.
- 49I. A. Wani, M. Jabeen, H. Geelani, F. A. Masoodi, I. Saba, S. Muzaffar, Food Hydrocoll. 2014, 35, 253.
- 50P. Alzate, L. Gerschenson, S. Flores, Food Hydrocoll. 2019, 95, 540.
- 51L. A. Guevaraa, L. N. Suaza, L. T. Sanchez, M. L. Pinzonb, C. C. Villaa, Int. J. Biol. Macromol. 2018, 111, 498.
- 52S. Chakraborty, B. Sahoo, I. Teraoka, L. M. Miller, R. A. Gross, Macromolecules 2005, 38, 61.
- 53R. Hoover, Carbohydr. Polym. 2001, 45, 253.
- 54L. Xia, G. Wenyuan, W. Juan, J. Qianqian, H. Luqi, Starch–Starke 2010, 62, 686.
- 55H. Yu, Q. Huang, Food Chem. 2010, 119, 669.
- 56P. C. Painter, R. W. Snyder, M. Starsinic, M. M. Coleman, D. W. Kuehn, A. Davis, Appl. Spectrosc. 1981, 35, 475.
- 57M. Kacuraakovaa, R. H. Wilson, Carbohydr. Polym. 2001, 44, 291.
- 58C. Y. Liang, K. H. Basset, E. A. McGinnes, R. H. Marchessault, Tappi 1960, 43, 1017.
- 59R. H. Marchessault, C. Y. Liang, J. Polym. Sci. 1962, 59, 357.
- 60C. Liu, Y. Qin, X. Li, Q. Sun, L. Xiong, Z. Liu, Int. J. Biol. Macromol. 2016, 84, 354.