Germinated Rice in Diabetes Management: Technological and Functional Changes
Deepa John
Department of Biotechnology, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Cochin, Kerala, 682506 India
Search for more papers by this authorCorresponding Author
Maya Raman
Department of Food Science and Technology, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Cochin, Kerala, 682506 India
E-mail: [email protected]
Search for more papers by this authorDeepa John
Department of Biotechnology, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Cochin, Kerala, 682506 India
Search for more papers by this authorCorresponding Author
Maya Raman
Department of Food Science and Technology, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Cochin, Kerala, 682506 India
E-mail: [email protected]
Search for more papers by this authorAbstract
Cereals are known for their outstanding source of macro- and micro-nutrients and phytochemicals. However, their interactions within the food matrices result in complexes that interfere with bioavailability, bio-accessibility, and its metabolism in the human system. Germination has been reported to interfere with these interactions in the food matrices and enhance the accessibility and digestibility of nutrients. The germinated rice in the management of the diabetes is a novel concept as it modulates the glycemic index of the product and also enhances the bio-accessibility of phytochemicals. Type-2 diabetes has shown an alarming increase in recent past, which is chiefly due to dietary habits and sedentary life style. Even though, medical science is developing new therapeutical measures, preventing the risk of disease through dietary modulations may be more preferred. Germination also improves the texture, cooking, and eating quality of rice making it more tastier. During germination, the starchphytochemical interactions, delayed digestibility and physiological performances and glycemic control, can pave way to diabetes management in such cases. In view of these, the current review focuses on the starch and its interactions with phytochemicals, the bioavailability and bioaccessibility of these components, and their impact on reduced glycemic index.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1X. Guo, H. Li, H. Xu, S. Woo, H. Dong, F. Lu, A. J. Lange, C. Wu, Acta Pharm. Sin. B 2012, 2, 358.
- 2M. Veit, R. van Asten, A. Olie, P. Prinz, Eur. J. Clin. Nutr. 2022, 76, 1497.
- 3F. Wu, N. Yang, A. Touré, Z. Jin, X. Xu, Crit. Rev. Food Sci. Nutr. 2013, 53, 451.
- 4J. Yu, B. Balaji, M. Tinajero, S. Jarvis, T. Khan, S. Vasudevan, V. Ranawana, A. Poobalan, S. Bhupathiraju, Q. Sun, W. Willett, BMJ Open 2022, 12, e065426.
- 5R. Kongkachuichai, R. Charoensiri, A. Meekhruerod, A. Kettawan, J. Cereal Sci. 2020, 94, 102994.
- 6H. Wang, N. Xiao, J. Ding, Y. Zhang, X. Liu, H. Zhang, Int. J. Biol. Macromol. 2020, 147, 965.
- 7S. B. Patil, M. K. Khan, J. Food Sci. Technol. 2011, 48, 661.
- 8S. G. Nkhata, E. Ayua, E. E. H. Kamau, J. B. Shingiro, Food Sci. Nutr. 2018, 6, 2446.
- 9Y. Ito, A. Mizukuchi, M. Kise, H. Aoto, S. Yamamoto, R. Yoshihara, J. Yokoyama, J. Med. Invest. 2005, 52, 159.
- 10B. H. Mohan, N. G. Malleshi, T. Koseki, LWT - Food Sci. Technol. 2010, 43, 784.
- 11J. Xu, H. Zhang, X. Guo, H. Qian, J. Sci. Food Agric. 2012, 92, 380.
- 12M. U. Imam, N. H. Azmi, M. I. Bhanger, N. Ismail, M. Ismail, J. Evid.Based Complementary Altern. Med. 2013, 2013, https://doi.org/10.1155/2013/134694.
10.1155/2013/134694 Google Scholar
- 13M. U. Imam, M. Ismail, Mol. Nutr. Food Res. 2013, 57, 401.
- 14S. Pasaribu, B. Wiboworini, L. Kartikasari, Int. J. Food Sci. Nutr. 2021, 6, 194.
- 15D. H. Cho, S.-T. Lim, Food Chem. 2016, 196, 259.
- 16F. Wu, N. Yang, A. Touré, Z. Jin, X. Xu, Crit. Rev. Food Sci. Nutr. 2013, 53, 451.
- 17A. Moongngarm, N. Saetung, FoodChem 2010, 122, 782.
- 18T. F. Hsu, M. Kise, M. F. Wang, Y. Ito, M. D. Yang, H. Aoto, R. Yoshihara, J. Yokoyama, D. Kunii, S. Yamamoto, J. Nutr. Sci. Vitaminol. 2008, 54, 163.
- 19O. N. Donkor, L. Stojanovska, P. Ginn, J. Ashton, T. Vasiljevic, Food Chem. 2012, 135, 950.
- 20D. Marion, L. Saulnier, J. Cereal Sci. 2020, 94, 103001.
- 21P. J. Cáceres, C. Martínez-Villaluenga, L. Amigo, J. Frias, Food Chem. 2014, 152, 407.
- 22B. Kamjijam, H. Bednarz, P. Suwannaporn, K. N. Jom, K. Niehaus, J. Cereal Sci. 2020, 93, 102958.
- 23A. L. Quettier, P. J. Eastmond, Plant Physiol. Biochem. 2009, 47, 485.
- 24M. A. Belozersky, Y. E. Dunaevsky, N. E. Voskoboynikova, Biochem. J. 1990, 272, 677.
- 25C. Chaiyasut, B. Sivamaruthi, N. Pengkumsri, W. Keapai, P. Kesika, M. Saelee, P. Tojing, S. Sirilun, K. Chaiyasut, S. Peerajan, N. Lailerd, Pharmaceuticals 2017, 10, 3.
- 26A. Mukamuhirwa, H. Persson Hovmalm, R. Ortiz, O. Nyamangyoku, M. L. Prieto–Linde, A. Ekholm, E. Johansson, J. Agro Crop. Sci. 2020, 206, 252.
- 27L. Á. do Nascimento, A. Abhilasha, J. Singh, M. C. Elias, R. Colussi, Zhongguo Shuidao Kexue 2022, 29, 201.
- 28L. Zhu, G. Wu, H. Zhang, L. Wang, H. Qian, X. Qi, J. Cereal Sci. 2018, 82, 175.
- 29A. S. N. Musa, I. M. Umar, M. Ismail, Afr. J. Biotechnol. 2011, 10, 6281.
- 30H. J. Chung, D. W. Cho, J. D. Park, D. K. Kweon, S. T. Lim, J. Cereal Sci. 2012, 56, 451.
- 31H. Wang, N. Xiao, J. Ding, Y. Zhang, X. Liu, H. Zhang, Int. J. Biol. Macromol. 2020, 147, 965.
- 32J. K. Park, S. S. Kim, K. O. Kim, Cereal Chem. 2001, 78, 151.
- 33S. Chao, J. Mitchell, S. Prakash, B. Bhandari, S. Fukai, J. Cereal Sci. 2021, 102, 103345.
- 34A. K. Kies, L. H. De Jonge, P. A. Kemme, A. W. Jongbloed, J. Agric. Food Chem. 2006, 54, 1753.
- 35V. Kumar, A. K. Sinha, H. P. S. Makkar, K. Becker, Food Chem. 2010, 120, 945.
- 36T. Chungcharoen, S. Prachayawarakorn, P. Tungtrakul, S. Soponronnarit, Food Bioprod. Process 2015, 94, 707.
- 37Y. Nakamura, Starch – Stärke 2018, 70, 1600375.
- 38T. Umemoto, T. Horibata, N. Aoki, M. Hiratsuka, M. Yano, N. Inouchi, Plant Prod. Sci. 2008, 11, 472.
- 39V. A. McKie, B. V. McCleary, J. Cereal Sci. 2015, 64, 70.
- 40J. Ye, S. Luo, A. Huang, J. Chen, C. Liu, D. J. McClements, Food Hydrocolloids 2019, 92, 135.
- 41C. Li, S. G. Oh, D. H. Lee, H. W. Baik, H. J. Chung, Int. J. Biol. Macromol. 2017, 105, 931.
- 42L. Román, M. M. Martínez, C. M. Rosell, M. Gómez, Int. J. Biol. Macromol. 2017, 101, 326.
- 43Y. Zhong, X. Xiang, J. Zhao, X. Wang, R. Chen, J. Xu, S. Luo, J. Wu, C. Liu, Food Chem. 2020, 304, 125432.
- 44T. Murata, T. Akazawa, S. Fukuchi, Plant Physiol. 1968, 43, 1899.
- 45T. Nomura, Y. Kono, T. Akazawa, Plant Physiol. 1969, 44, 765.
- 46A. Khatun, D. L. E. Waters, L. Liu, Food Hydrocolloids 2020, 109, 106072.
- 47S. Shen, Y. Wang, M. Li, F. Xu, L. Chai, J. Bao, J. Funct. Foods 2015, 19, 641.
- 48F. A. Guzmán-Ortiz, J. Castro-Rosas, C. A. Gómez-Aldapa, R. Mora-Escobedo, A. Rojas-León, M. L. Rodríguez-Marín, R. N. Falfán-Cortés, A. D. Román-Gutiérrez, Food Rev. Int. 2019, 35, 177.
- 49K. M. Wang, J. G. Wu, G. Li, D. P. Zhang, Z. W. Yang, C. H. Shi, J. Cereal Sci. 2011, 54, 116.
- 50L. Lu, S. Tian, H. Liao, J. Zhang, X. Yang, J. M. Labavitch, W. Chen, PLoS One 2013, 8, e57360.
- 51F. Shahidi, Nahrung 2000, 44, 158.
10.1002/1521-3803(20000501)44:3<158::AID-FOOD158>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 52F. Wu, H. Chen, N. Yang, J. Wang, X. Duan, Z. Jin, X. Xu, J. Cereal Sci. 2013, 58, 263.
- 53A. Jayadeep, N. G. Malleshi, CyTA-J.Food 2011, 9, 82.
- 54C. Yamada, H. Izumi, J. Hirano, A. Mizukuchi, M. Kise, T. Matsuda, Y. Kato, Biosci. Biotechnol. Biochem. 2005, 69, 1877.
- 55A. L. Feng, Y.-Y. Xiang, L. Gui, G. Kaltsidis, Q. Feng, W. Y. Lu, Diabetologia 2017, 60, 1033.
- 56Q. Wang, G. Prud'homme, Y. Wan, Diabetes Metab. Syndr. Obes. 2015, 8, 79.
- 57M. Schwirtlich, Z. Emri, K. Antal, Z. Máté, Z. Katarova, G. Szabó, FASEB J. 2010, 24, 1218.
- 58N. Soltani, H. Qiu, M. Aleksic, Y. Glinka, F. Zhao, R. Liu, Y. Li, N. Zhang, R. Chakrabarti, T. Ng, T. Jin, H. Zhang, W.-Y. Lu, Z.-P. Feng, G. J. Prud'homme, Q. Wang, Proc. Natl. Acad. Sci. USA 2011, 108, 11692.
- 59S. Sohrabipour, M. R. Sharifi, A. Talebi, M. Sharifi, N. Soltani, Eur. J. Pharmacol. 2018, 826, 75.
- 60A. B. Sitanggang, M. Joshua, H. Munarko, F. Kusnandar, S. Budijanto, Food Technol. Biotechnol. 2021, 59, 295.
- 61S. Usuki, Y. Y. Tsai, K. Morikawa, S. Nonaka, Y. Okuhara, M. Kise, R. K. Yu, PLoS One 2011, 6, e28693.
- 62H. A. N. Al-Wadei, M. F. Ullah, M. Al-Wadei, Mol. Nutr. Food Res. 2011, 55, 1745.
- 63H. Y. Kim, T. Yokozawa, T. Nakagawa, S. Sasaki, Food Chem. Toxicol. 2004, 42, 2009.
- 64S. H. Oh, J.-R. Soh, Y.-S. Cha, J. Med. Food 2003, 6, 115.
- 65E. B. Giuntini, F. A. Sardá, E. W. de Menezes, Foods. 2022, 11, 3934.
- 66S. Ou, K. Kwok, Y. Li, L. Fu, J. Agric. Food Chem. 2001, 49, 1026.
- 67R. Vinayagam, M. Jayachandran, B. Xu, Phytother. Res. 2016, 30, 184.
- 68Q. Jiang, S. Christen, M. K. Shigenaga, B. N. Ames, Am. J. Clin. Nutr. 2001, 74, 714.
- 69M. Prasad, S. Jayaraman, M. A. Eladl, M. El-Sherbiny, M. A. E. Abdelrahman, V. P. Veeraraghavan, S. Vengadassalapathy, V. R. Umapathy, S. F. Jaffer Hussain, K. Krishnamoorthy, D. Sekar, C. P. Palanisamy, S. K. Mohan, P. Rajagopal, Molecules 2022, 27, 1595.
- 70S. B. Ghatak, S. S. Panchal, Int. J. Diabetes Dev. Ctries. 2012, 32, 185.
- 71Y. H. Tang, Y. H. Wang, C. C. Chen, C. J. Chan, F. J. Tsai, S. Y. Chen, Int. J. Mol. Sci. 2022, 23, 13544.
- 72S. B. Patil, M. K. Khan, J. Food Sci. Technol. 2011, 48, 661.
- 73M. Torimitsu, R. Nagase, M. Yanagi, M. Homma, Y. Sasai, Y. Ito, K. Hayamizu, S. Nonaka, T. Hosono, M. Kise, T. Seki, J. Nutr. Sci. Vitaminol. 2010, 56, 287.
- 74T. Liu, Y. Zhou, D. Wu, Q. Chen, X. Shu, Int. J. Food Sci. Technol. 2022, 57, 5439.
- 75S. Pasaribu, B. Wiboworini, L. Kartikasari, Int. J. Nutr. Sci. 2021, 6, 194.
- 76Y. R. Lee, S. H. Lee, G. Y. Jang, Y. J. Lee, M. Y. Kim, Y.-B. Kim, J. Lee, H. S. Jeong, Food Nutr. Res. 2019, 63, https://doi.org/10.29219/fnr.v63.3603.
- 77S. Usuki, Y. Ito, K. Morikawa, M. Kise, T. Ariga, M. Rivner, R. K. Yu, Nutr. Metab. (Lond.) 2007, 4, 1.
- 78H. Hagiwara, T. Seki, T. Ariga, Biosci. B. Biochem. 2004, 68, 444.
- 79P. Charoenthaikij, K. Jangchud, A. Jangchud, W. Prinyawiwatkul, H. K. No, Biosci. B. Biochem. Int. J. Food Sci. Nutr. 2012, 47, 75.
- 80G. Na, J. Zhang, D. Lv, P. Chen, X. Song, F. Cai, S. Zheng, W. Wan, Y. Shan, Clin. Nutr. 2023, 42, 579.
- 81H. L. Liang, P. W. Cheng, H. L. Lin, C. L. Hao, L. Y. Ke, H. Y. Chou, Y. H. Tseng, H. W. Yen, K. P. Shen, J. Funct. Foods 2020, 75, 104218.
- 82Q. Ding, Q. J. Ren, Y. Zhou, Z. Bai, J. Yan, G. Na, Y. Shan, Food Funct. 2022, 13, 8274.
- 83Y. R. Lee, S. H. Lee, G. Y. Jang, Y. J. Lee, M. Y. Kim, Y. B. Kim, J. Lee, H. S. Jeong, J. Reticuloendothel. Soc. 2019, 63, 8274.
- 84S. I. Chung, T. H. Kim, C. W. Rico, M. Y. Kang, Nutrients. 2014, 6, 2266.
- 85B. Abubakar, H. M. Yakasai, N. Zawawi, M. Ismail, J. Food Drug Anal. 2018, 262, 706.
10.1016/j.jfda.2017.06.010 Google Scholar