Pasting, Rheological, and Thermal Properties and Structural Characteristics of Large and Small Arenga pinnata Starch Granules
Jiang-Yang Mei
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorLu Zhang
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorYing Lin
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorShu-Bo Li
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorCong-Hao Bai
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorCorresponding Author
Zhen Fu
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
E-mail: [email protected]
Search for more papers by this authorJiang-Yang Mei
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorLu Zhang
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorYing Lin
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorShu-Bo Li
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorCong-Hao Bai
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorCorresponding Author
Zhen Fu
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Arenga pinnata starch (APS) is separated into large and small size fractions. The large granules (APS-L) show a more elongated oval shape, while the small granules (APS-S) are roughly close to a round shape. The large and small granules exhibit a Maltese cross at one end of the APS granules. Both large and small fractions show C-type crystallinity, but the APS-L display a higher crystallinity and more ordered molecular structure. In addition, APS-L have higher helices content than that of APS-S. The APS-L have higher peak viscosity, trough, and final viscosity values, breakdown value, gelatinization enthalpy, and gelatinization temperatures than that of the APS-S, but the APS-L fraction displays a lower setback value. The APS-S gel is more elastic and more solid than APS-L gel. The results indicate that granule size is significantly related to pasting, rheological, and thermal properties of the APS.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M. R. Ishak, S. M. Sapuan, Z. Leman, M. Z. A. Rahman, U. M. K. Anwar, J. P. Siregar, Carbohydr. Polym. 2013, 91, 699.
- 2R. A. Ilyas, S. M. Sapuan, M. R. Ishak, E. S. Zainudin, Carbohydr. Polym. 2018, 202, 186.
- 3J. Sahari, S. M. Sapuan, E. S. Zainudin, M. A. Maleque, Asian J. Chem. 2014, 26, 955.
- 4D. R. Adawiyah, T. Sasaki, K. Kohyama, Carbohydr. Polym. 2013, 92, 2306.
- 5J. Sahari, S. M. Sapuan, E. S. Zainudin, M. A. Maleque, Asian J. Chem. 2014, 26, 955.
- 6L. Zhang, M. H. Ren, Y. Lin, Z. Fu, Int. J. Food Prop. 2019, 22, 477.
- 7J. C. Shannon, D. L. Garwood, C. D. Boyer, in Starch, 3rd ed. (Eds: J. BeMiller, R. Whistler), Academic Press, San Diego, CA 2009, pp. 23–82.
10.1016/B978-0-12-746275-2.00003-3 Google Scholar
- 8M. Naka, Y. Sugimoto, S. Sakamoto, H. Fuwa, J. Nutr. Sci. Vitaminol. 1985, 31, 423.
- 9D. D. Pan, J.-l. Jane, Biomacromolecules 2000, 1, 126.
- 10C. D. Boyer, J. C. Shannon, D. L. Garwood, R. G. Creech, Cereal Chem. 1976, 53, 327.
- 11E. Šárka, V. Dvořáček, Food Hydrocolloids 2017, 69, 402.
- 12Z. Fu, S.-J. Luo, W. Liu, C.-M. Liu, L.-j. Zhan, Int. J. Food Sci.Technol. 2016, 51, 1034.
- 13E. Chiotelli, M. L. Meste, Cereal Chem. J. 2002, 79, 286.
- 14S. Dhital, K. J. Shelat, A. K. Shrestha, M. J. Gidley, Carbohydr. Polym. 2013, 93, 365.
- 15H. Tang, H. Ando, K. Watanabe, Y. Takeda, T. Mitsunaga, Cereal Chem. J. 2000, 77, 27.
- 16L. Kaur, J. Singh, O. J. McCarthy, H. Singh, J. Food Eng. 2007, 82, 383.
- 17X. Peng, Y. Yao, Food Hydrocolloids 2018, 74, 349.
- 18L. Chen, R. Ma, Z. Zhang, M. Huang, C. Cai, R. Zhang, D. J. McClements, Y. Tian, Z. Jin, Food Hydrocolloids 2019, 89, 11.
- 19J. Cai, C. Cai, J. Man, B. Xu, C. Wei, Int. J. Food Prop. 2015, 18, 380.
- 20L. Lin, J. Huang, L. Zhao, J. Wang, Z. Wang, C. Wei, Carbohydr. Polym. 2015, 134, 448.
- 21L. Zhang, Y. Zhao, W. Hu, J.-Y. Qian, X.-L. Ding, C.-R. Guan, Y.-Q. Lu, Y. Cao, Carbohydr. Polym. 2018, 200, 400.
- 22S. Pérez, P. M. Baldwin, D. J. Gallant, in Starch, 3rd ed. (Eds: J. BeMiller, R. Whistler), Academic Press, San Diego, CA 2009, pp. 149–192.
10.1016/B978-0-12-746275-2.00005-7 Google Scholar
- 23R. Hoover, Carbohydr. Polym. 2001, 45, 253.
- 24I. Tan, B. M. Flanagan, P. J. Halley, A. K. Whittaker, M. J. Gidley, Biomacromolecules 2007, 8, 885.
- 25E. Chiotelli, M. Le Meste, Cereal Chem. J. 2002, 79, 286.
- 26S. Dhital, A. K. Shrestha, M. J. Gidley, Carbohydr. Polym. 2010, 82, 480.
- 27P. Rubens, J. Snauwaert, K. Heremans, R. Stute, Carbohydr. Polym. 1999, 39, 231.
- 28K. R. Morgan, R. H. Furneaux, N. G. Larsen, Carbohydr. Res. 1995, 276, 387.
- 29W. R. Morrison, R. V. Law, C. E. Snape, Cereal Sci. 1993, 18, 107.
- 30N. Singh, L. Kaur, J. Sci. Food Agric. 2004, 84, 1241.
- 31K. Kasemwong, K. Piyachomkwan, R. Wansuksri, K. Sriroth, Starch-Starke 2008, 60, 624.
- 32Z. H. Ao, J. L. Jane, Carbohydr. Polym. 2007, 67, 46.
- 33S. Ozturk, H. Koksel, K. Kahraman, P. K. W. Ng, Eur. Food Res. Technol. 2009, 229, 115.
- 34S. Puncha-Arnon, W. Pathipanawat, C. Puttanlek, V. Rungsardthong, D. Uttapap, Food Res.Int. 2008, 41, 552.
- 35S. Dhital, A. K. Shrestha, J. Hasjim, M. J. Gidley, J. Agric. Food Chem. 2011, 59, 10151.
- 36J. G. Waramboi, S. Dennien, M. J. Gidley, P. A. Sopade, Food Chem. 2011, 126, 1759.
- 37H. Zhang, L. Yin, Y. Zheng, J. Shen, Food Hydrocolloids 2016, 54, 23.
- 38Y. H. Chang, S. T. Lim, B. Yoo, J. Food Eng. 2004, 64, 521.
- 39D. Yoo, C. Kim, B. Yoo, Starch-Starke 2005, 57, 310.
- 40H. Liu, L. Yu, F. Xie, L. Chen, Carbohydr. Polym. 2006, 65, 357.
- 41S. Naguleswaran, T. Vasanthan, R. Hoover, D. Bressler, Food Res.Int. 2013, 51, 771.
- 42D. Qiao, F. Xie, B. Zhang, W. Zou, S. Zhao, M. Niu, R. Lv, Q. Cheng, F. Jiang, J. Zhu, Food Hydrocolloids 2017, 65, 24.
- 43Z. Fu, S. J. Luo, J. N. BeMiller, W. Liu, C. M. Liu, Starch-Starke 2015, 67, 595.
- 44Y. Zhang, W. Liu, C. Liu, S. Luo, T. Li, Y. Liu, D. Wu, Y. Zuo, Food Chem. 2014, 158, 255.
- 45O. Sevenou, S. E. Hill, I. A. Farhat, J. R. Mitchell, Int. J. Biol. Macromol. 2002, 31, 79.