Physicochemical and Structural Properties of Starch from Cassava Roots Differing in Growing Duration and Ploidy Level
Subrahmanyan S. Gourilekshmi
Division of Crop Utilization, ICAR-Central Root Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala, 695017 India
Search for more papers by this authorCorresponding Author
Alummoottil N. Jyothi
Division of Crop Utilization, ICAR-Central Root Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala, 695017 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorJanardanan Sreekumar
Section of Extension and Social Sciences, ICAR-Central Root Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala, 695017 India
Search for more papers by this authorSubrahmanyan S. Gourilekshmi
Division of Crop Utilization, ICAR-Central Root Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala, 695017 India
Search for more papers by this authorCorresponding Author
Alummoottil N. Jyothi
Division of Crop Utilization, ICAR-Central Root Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala, 695017 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorJanardanan Sreekumar
Section of Extension and Social Sciences, ICAR-Central Root Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala, 695017 India
Search for more papers by this authorAbstract
Wide variability exists in starch properties even among the same botanical source depending on climatic factors, genotypic differences, harvesting period, etc. The present study is an attempt to understand changes in structure, composition and physicochemical properties of cassava starch with root development. Starch is isolated from five cultivars of cassava at different root harvesting periods starting from root initiation stage, that is, 2–12 months after planting. The cultivars are selected in such a way that they represent different growing duration (short and normal), ploidy level (diploid and triploid), and end use (industrial and edible). Amylose/amylopectin ratio varies in a narrow range (0.24–0.28) for the starch from different varieties. Starch granule morphology does not show any significant variation with root growth and cultivar, but the average granule size varies significantly. All the starches show A-type X-ray diffraction pattern and the percentage crystallinity ranges from 37% to 48%. Average chain length and molecular weight of the starch show varietal differences. Even though the swelling power, solubility, water binding capacity and paste clarity are not significantly affected by the root harvesting period, the cultivar differences are evident for these parameters. Significant differences in the physicochemical and functional properties of starch with ploidy of the plant are not observed.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1P. K. Goel, R. S. Singhal, P. R. Kulkarni, Food Chem. 1999, 64, 383.
- 2J. Anon, V. Nimitr, T. Banyong, K. Wanwipa, B. Poramate, K. Thawan, T. Piyada, J. Sanun, Agron. J. 2018, 8, 297.
- 3J. N. BeMiller, R. L. Whistler, Starch: Chemistry and Technology, Academic Press, New York 2009.
- 4F. Zhu, Carbohydr. Polym. 2015, 122, 456.
- 5M. Asaoka, J. M. V. Blanshard, J. E. Rickard, J. Sci. Food Agric. 1992, 59, 53.
- 6I. R. M. Benesi, M. T. Labuschagne, L. Herselman, N. M. Mahungu, J. K. Saka, Euphytica 2008, 160, 59.
- 7E. Nuwamanya, Y. Baguma, N. Emmambux, J. Taylor, J. Plant Breed. Crop Sci. 2009, 2, 1.
- 8M. Thitisaksakul, R. C. Jiménez, M. C. Arias, D. M. Beckles, J. Cereal Sci. 2012, 56, 67.
- 9M. K. Mtunguja, H. S. Laswai, E. Kanju, J. Ndunguru, Y. C. Muzanila, Int. J. Food Sci. Nutr. 2016, 4, 791.
- 10K. Sriroth, V. Santisopasri, C. Petchalanuwat, K. Wong, K. Piyachomkwan, C. G. Oates, Carbohydr. Polym. 1999, 38, 161.
- 11D. M. Beckles, M. Thitisaksakul, Starch/Staerke 2014, 66, 58.
- 12R. Hoover, Carbohydr. Polym. 2001, 45, 253.
- 13M. K. Mtunguja, M. Thitisaksakul, Y. C. Muzanila, R. Wansuksri, K. Piyachomkwan, H. S. Laswai, G. Chen, C. F. Shoemaker, N. Sinha, D. M. Beckles, Starch/Staerke 2016, 68, 514.
- 14P. Martínez, F. Pena, L. A. Bello-Pérez, C. Núñez-Santiago, H. Yee-Madeira, C. Velezmoro, Food Chem. 2019, 2, 100030.
- 15M. O. Onitilo, L. O. Sunni, I. Daniel, B. Maziya-Dixon, A. Dixon, J. Food Agric. Environ. 2007, 5, 108.
- 16T. Sánchez, E. Salcedo, H. Ceballos, D. Dufour, G. Mafla, N. Morante, I. X. Moreno, Starch/Staerke 2009, 61, 12.
- 17S. B. Nair, A. N. Jyothi, Starch/Staerke 2013, 65, 273.
- 18L. M. Gilbert, G. A. Gilbert, S. P. Spragg, Methods in Carbohydrate Chemistry, Academic Press, New York 1965.
- 19 Association of Official Analytical Chemists International, Official Method of Analysis, 19th ed., Washington D.C., USA, 2012.
- 20Q. Wang, F. Guo, Y. Rong, Z. Chi, Renew. Energy 2012, 46, 164.
- 21S.Jisha, G. P, S. N. Moorthy, K. Rajeshkumar, Innovative Food Sci. Emerging Technol. 2008, 9, 587.
- 22 Association of Analytical Chemists, in Proteins, Association of Official Analytical Chemists, (Ed. W. Horowitz) 9th ed., Washington, D.C, USA, 1960.
- 23A. P. Shanty, K. R. Bhattacharaya, C. M. Sowbhagya, Starch/Staerke 1980, 32, 409.
- 24E. H. Stephan, G. A. Gray, Adams, B. G. Richard, Starch/Staerke 2016, 68, 846.
- 25L. F. Hood, C. Mercier, Carbohydr. Res. 1978, 60, 53.
10.1016/S0008-6215(00)83570-3 Google Scholar
- 26S. Sadasivam, A. Manickam, Biochemical Methods, New Age International Publishers, India 2004.
- 27M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, Anal. Chem. 1956, 28, 350.
- 28S. Krishnaveni, B. Theymoli, S. Sadasivam, Food Chem. 1984, 15, 229.
- 29R. Li, L. Hou, A. Zhang, Y. Lu, W. Song, W. Tadesse, X. Wang, M. Liu, W. Zheng, S. Xu, Pak. J. Bot. 2018, 50, 913.
- 30T. J. Schoch, Determination of reducing value, in Methods in Carbohydrate Chemistry, Academic Press, New York 1964.
- 31E. Nuwamanya, Y. Baguma, E. Wembabazi, P. Rubaihayo, Afr. J. Biotechnol. 2011, 10, 12018.
- 32A. N. Jyothi, S. N. Moorthy, J. Sreekumar, K. N. Rajasekharan, J. Root Crops 2008, 34, 34.
- 33A. N. Jyothi, K. Kiran, B. Wilson, S. Moorthy, B. Nambisan, Starch/Staerke 2007, 59, 141.
- 34A. Charles, K. Sriroth, T. Huang, Food Chem. 2005, 92, 615.
- 35X. Tan, B. Gu, X. Li, C. Xie, L. Chen, B. Zhang, Int. J. Biol. Macromol. 2017, 101, 9.
- 36Q. Liu, E. Weber, V. Currie, R. Yada, Carbohydr. Polym. 2003, 51, 213.
- 37S. N. Moorthy, T. Ramanujam, Starch/Staerke 1986, 38, 58.
- 38Y. Sugimoto, Y. Yamashita, I. Hori, K. Abe, H. Fuwa, J. Appl. Glycosci. 1995, 42, 345.
- 39M. Himeda, N. N. Yanou, R. M. Nguimbou, C. Gaiani, J. Scher, J. B. Facho, M. F. Carl, Mbofung, Int. J. Biosci. 2012, 2, 14.
- 40M. Raphael, B. Yona, K. Stephen, N. Ephraim, R. Patrick, M. Settumba, H. Bruce, K. Samuel, J. Plant Breed. Crop Sci. 2011, 3, 195.
- 41S. Yoo, J. Jane, Carbohydr. Polym. 2002, 49, 297.
- 42W. Praznik, G. Burdicek, R. H. F. Beck, Starch/Staerke 1986, 38, 181.
- 43R. Geddes, C. T. Greenwood, S. Mackenzie, Carbohydr. Res. 1965, 1, 71.
- 44N. Charoenkul, D. Uttapap, W. Pathipanawat, Y. Takeda, Starch/Staerke 2006, 58, 443.
- 45J. Jane, Y. Y. Chen, L. F. Lee, A. E. Mc-Pherson, K. S. Wong, M. Radosavljevic, T. Kasemsuwan, Cereal Chem. J. 1999, 76, 629.
- 46S. Srichuwong, T. C. Sunarti, T. Mishima, N. Isono, M. Hisamatsu, Carbohydr. Polym. 2005, 60, 529.
- 47S. N. Moorthy, Starch/Staerke 1986, 38, 77.
- 48J. L. Jane, T. Kasemsuwan, S. Leas, H. Zobel, J. F. Robyt, Starch/Staerke 1994, 46, 121.
- 49G. K. Athira, A. N. Jyothi, Int. J. Pharm. Sci. 2015, 6, 200.
- 50N. Singh, S. Kaur, N. Isono, Y. Ichihashi, Food Res. Int. 2012, 46, 194.
- 51A. A. Wani, P. Singh, M. A. Shah, U. Schweiggert-Weisz, Compr. Rev. Food Sci. Food Saf. 2012, 11, 417.
- 52A. Rolland-Sabate, T. Sanchez, A. Buléon, P. Colonna, B. Jaillais, H. Ceballos, Food Hydrocolloids 2012, 27, 161.
- 53L. M. Vasconcelos, A. C. Brito, C. D. Carmo, P. H. G. A. Oliveira, E. J. Oliveira, Genet. Mol. Res. 2017, 13, 16.
- 54I. Defloor, I. Dehing, J. A. Delcour, Starch/Staerke 1998, 50, 58.
- 55P. Teerawanichpan, M. Lertpanyasampatha, S. Netrphan, S. Varavinit, O. Boonseng, J. Narangajavana, Starch/Staerke 2008, 60, 696.
- 56E. Nuwamanya, Y. Baguma, N. Emmambux, P. Rubaihayo, Afr. J. Food Sci. 2010, 4, 8.
- 57E. Baafi, O. Safo-Kantanka, J. Agron. 2007, 6, 581.
10.3923/ja.2007.581.585 Google Scholar
- 58F. H. G. Peroni, T. S. Rocha, C. M. L. Franco, Food Sci. Technol. Int. 2006, 12, 505.
- 59A. Gani, S. S. Haq, F. A. Masoodi, A. A. Broadway, Braz. Arch. Biol. Techn. 2010, 53, 731.