Methods for the Extraction of Roots, Tubers, Pulses, Pseudocereals, and Other Unconventional Starches Sources: A Review
Dianini Hüttner Kringel
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, 96010–900 Brazil
Search for more papers by this authorShanise Lisie Mello El Halal
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, 96010–900 Brazil
Search for more papers by this authorCorresponding Author
Elessandra da Rosa Zavareze
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, 96010–900 Brazil
E-mail: [email protected]
Search for more papers by this authorAlvaro Renato Guerra Dias
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, 96010–900 Brazil
Search for more papers by this authorDianini Hüttner Kringel
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, 96010–900 Brazil
Search for more papers by this authorShanise Lisie Mello El Halal
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, 96010–900 Brazil
Search for more papers by this authorCorresponding Author
Elessandra da Rosa Zavareze
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, 96010–900 Brazil
E-mail: [email protected]
Search for more papers by this authorAlvaro Renato Guerra Dias
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, 96010–900 Brazil
Search for more papers by this authorAbstract
New botanical materials are emerging as unconventional sources of starch, increasing their economic value and, therefore, providing a higher starch demand with novel and unique properties for the substitution of traditional starch sources. Overall, starch isolation from roots and tubers is simple and based on breaking vegetal cells to release the starch. Starch extraction from pulses is more complex due to their higher protein and lipid content and smaller starch granules compared to roots and tuber starches. Starch from pseudocereals can be isolated by wet milling. Recently, alternative sources of starch have been proposed, including tree, herbs/shrubs, and fruits; the isolation of starch from these sources involves wet milling procedures in the presence or absence of the chemical solutions. This review summarizes the usual laboratory methods and recent advances in the extraction of starches from roots, tubers, pulses, and pseudocerals. Starch extraction methods from unconventional sources are also described. This review may be useful to guide researchers and technologists from the industry in their choice of better starch extraction methods, presenting the advantages and disadvantages of each method.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1B. Montero, M. Rico, S. Rodríguez-Llamazares, L. Barral, R. Bouza, Carbohydr. Polym. 2017, 157, 1094.
- 2Á. Santana, A. Angela, M. Meireles, Food Public Health 2014, 4, 229.
10.5923/j.fph.20140405.04 Google Scholar
- 3R. G. Utrilla-Coello, M. E. Rodríguez-Huezo, H. Carrillo-Navas, C. Hernández-Jaimes, E. J. Vernon-Carter, J. Alvarez-Ramirez, Carbohydr. Polym. 2014, 101, 154.
- 4M. Lovera, E. Pérez, A. Laurentin, Carbohydr. Polym. 2017, 176, 50.
- 5X. Fan, S. Zhang, L. Lin, L. Zhao, A. Liu, C. Wei, Food Hydrocolloids 2016, 61, 183.
- 6E. Daiuto, M. Cereda, S. Sarmento, O. Vilpoux, Starch/Stärke 2005, 57, 153.
- 7S. N. Moorthy, Woodhead Publishing Series in Food Science, Technology, and Nutrition, CRC Press, Boca Raton, FL 2004, pp. 321–359.
- 8F. Zhu, Compr. Rev. Food Sci. Food Saf. 2015, 14, 357.
- 9F. Zhu, Carbohydr. Polym. 2015, 122, 456.
- 10D. T. Do, J. Singh, Ref. Module Food Sci. 2018, 2019, 15.
- 11N. Sing, Pulse Foods 2011, 2011, 91.
10.1016/B978-0-12-382018-1.00004-6 Google Scholar
- 12M. A. Loubes, A. N. Calzetta Resio, M. P. Tolaba, C. Suarez, LWT–Food Sci. Technol. 2012, 46, 519.
- 13J. R. Mufari, P. P. Miranda-Villa, E. L. Calandri, LWT–Food Sci. Technol. 2018, 96, 527.
- 14S. L. M. El Halal, D. H. Kringel, E. R. Zavareze, A. R. G. Dias, Starch/Stärke 2019, 71, 1900128.
- 15F. W. Hoover, F. W. Sosulski, Can. J. Physiol. Pharmacol. 1991, 69, 79.
- 16C. Liu, S. Wang, L. Copeland, S. Wang, LWT–Food Sci. Technol. 2015, 64, 829.
- 17N. L. Vanier, E. R. Zavareze, V. Pinto, B. Klein, F. T. Botelho, A. R. G. Dias, M. C. Elias, Food Chem. 2012, 131, 1255.
- 18G. Rupollo, N. L. Vanier, E. R. Zavareze, M. de Oliveira, J. M. Pereira, R. T. Paraginski, A. R. G. Dias, M. C. Elias, Carbohydr. Polym. 2011, 86, 1403.
- 19H. Wang, Z. Li, X. Wang, L. Chen, B. Zhang, Int. J. Biol. Macromol. 2017, 102, 162.
- 20M. Ma, Y. Wang, M. Wang, J. Lin, S. Jane, K. Du, Food Hydrocolloids 2017, 63, 249.
- 21Q. Sun, L. Chu, L. Xiong, F. Si, J. Food Sci. Technol. 2015, 52, 327.
- 22D. S. Gomes, L. Prado, L. S. Rosa, M. R. Spier, E. Schnitzler, N. Waszczynskyj, Thermochim. Acta 2018, 662, 90.
- 23S. Wang, P. Sharp, L. Copeland, Food Chem. 2011, 126, 1546.
- 24M. Piecyk, B. Drużyńska, A. Ołtarzewska, R. Wołosiak, E. Worobiej, E. Ostrowska-Ligęza, Int. J. Biol. Macromol. 2018, 118, 2113.
- 25H. A. Talab, Eur. Online J. Nat. Soc. 2016, 5, 1012.
- 26T. S. Leite, A. L. T. de Jesus, M. Schmiele, A. A. L. Tribst, M. Cristianini, LWT–Food Sci. Technol. 2017, 76, 361.
- 27W. S. Ratnayake, R. Hoover, T. Warkentin, Starch/Stärke 2002, 54, 217.
- 28S. Wang, L. Copeland, Food Chem. 2012, 135, 1635.
- 29T. Majeed, I. A. Wani, A. M. Hamdani, N. A. Bhat, Int. J. Biol. Macromol. 2018, 114, 1144.
- 30M. Joshi, Y. Timilsena, B. Adhikari, J. Integr. Agric. 2017, 16, 2898.
- 31H. Hoover, T. Hughes, H. J. Chung, Q. Liu, Food Res. Int. 2010, 43, 399.
- 32M. Joshi, P. Aldred, S. McKnight, J. F. Panozzo, S. Kasapis, R. Adhikari, B. Adhikari, Carbohydr. Polym. 2013, 92, 1484.
- 33H. Lee, A. Htoon, J. Paterson, Food Chem. 2007, 102, 551.
- 34L. Li, T. Z. Yuan, R. Setia, R. B. Raja, B. Zhang, Y. Ai, Food Chem. 2019, 276, 599.
- 35T. P. R. Santos, M. Leonel, É. L. Garcia, E. L. do Carmo, C. M. L. Franco, Int. J. Biol. Macromol. 2016, 82, 144.
- 36D. Simkova, J. Lachman, K. Hamouz, B. Vokal, Food Chem. 2013, 141, 3872.
- 37J. Huang, N. Wei, H. Li, S. Liu, D. Yang, Carbohydr. Polym. 2014, 103, 355.
- 38A.-M. Hermansson, K. Svegmark, Trends Food Sci. Technol. 1996, 7, 345.
- 39R. Colussi, J. Singh, L. Kaur, E. R. Zavareze, A. R. G. Dias, R. B. Stewart, H. Singh, Food Chem. 2017, 226, 171.
- 40R. Colussi, L. Kaur, E. R. Zavareze, A. R. G. Dias, R. B. Stewart, J. Singh, Food Hydrocolloids 2018, 75, 131.
- 41J. Singh, O. J. McCarthy, H. Singh, Carbohydr. Polym. 2006, 64, 569.
- 42J. Singh, N. Singh, Food Chem. 2001, 75, 67.
- 43H. E. Grommers, D. A. Van der Krogt, in Starch: Chemistry and Technology, 3rd ed. (Eds: J. BeMiller, R. Whistler), Academic Press, San Diego, CA 2009.
- 44A. Altemimi, Foods 2018, 7, 14.
- 45L. Zhang, L. Zhao, X. Bian, K. Guo, L. Zhou, C. Wei, Food Hydrocolloids 2018, 80, 168.
- 46D. N. Zhou, B. Zhang, B. Chen, H. Q. Chen, Food Chem. 2017, 230, 516.
- 47P. T. B. Trung, L. B. B. Ngoc, P. N. Hoa, N. N. T. Tien, P. V. Hung, Int. J. Biol. Macromol. 2017, 105, 1071.
- 48O. K. Abegunde, T. H. Mu, J. W. Chen, F. M. Deng, Food Hydrocolloids 2013, 33, 169.
- 49K. Guo, L. Lin, X. Fan, L. Zhang, C. Wei, Food Chem. 2018, 257, 75.
- 50F. Zhu, S. Wang, Trends Food Sci. Technol. 2014, 36, 68.
- 51A. Xu, K. Guo, T. Liu, X. Bian, L. Zhang, C. Wei, Molecules 2018, 23, 2134.
- 52J. Kim, C. Ren, M. Shin, Starch/Stärke 2013, 65, 923.
- 53A. Díaz, C. Dini, S. Z. Viña, M. A. García, LWT–Food Sci. Technol. 2018, 93, 116.
- 54K. Liu, Y. Zu, C. Chi, B. Gu, L. Chen, X. Li, Int. J. Biol. Macromol. 2018, 120, 346.
- 55R. Liu, W. Sun, Y. Zhang, Z. Huang, H. Hu, M. Zhao, Food Chem. 2019, 271, 284.
- 56P. Van Hung, N. T. M. Huong, N. T. L. Phi, N. N. T. Tien, Int. J. Biol. Macromol. 2017, 95, 299.
- 57W. F. Breuninger, K. Piyachomkwan, K. Sriroth, in Starch: Chemistry and Technology, 3rd ed. (Eds: J. BeMiller, R. Whistler), Academic Press, San Diego, CA 2009.
- 58J. J. M. Swinkels, Starch/Stärke 1985, 37, 1.
- 59G. Da, E. Ferret, P.-A. Marechal, M. L. Thanh, C. Marouze, D. Dufour, Process Biochem. 2010, 45, 1837.
- 60Manickavasagan, K. Thangavel, Ama-Agr. Mech. Asia Af. 2006, 37, 80.
- 61F. Cornejo, G. Novillo, E. Villacrés, C. M. Rosell, Food Res. Int. 2019, 121, 933.
- 62L. A. Olutayo, K. O. Mogaji, S. A. Fasoyin, Int. J. Comp. Eng. Res. 2015, 5, 23.
- 63P. G. Middlewood, J. K. Carson, J. Membr. Sci. 2012, 411–412, 22.
- 64H. Corke, Y. Z. Cai, H. X. Wu, Encycl. Food Grains 2016, 1, 287.
10.1016/B978-0-12-394437-5.00032-2 Google Scholar
- 65C. Condés, M. C. Anón, A. Dufresne, A. N. Mauri, Food Hydrocolloids 2018, 74, 159.
- 66N. Calzetta Resio, M. P. Tolaba, C. Suárez, Int. J. Food Sci. Technol. 2006, 41, 70.
- 67J. Al-Hakkak, F. Al-Hakkak, Starch/Stärke 2007, 59, 117.
- 68E. J. Leal-Castañeda, Y. García-Tejeda, H. Hernández-Sánchez, L. Alamilla-Beltrán, D. I. Téllez-Medina, G. Calderón-Domínguez, H. S. García, G. F. Gutiérrez-López, Food Hydrocolloids 2018, 80, 177.
- 69C. D. Bet, C. S. de Oliveira, T. A. D. Colman, M. T. Marinho, L. G. Lacerda, A. P. Ramos, E. Schnitzler, Food Chem. 2018, 264, 435.
- 70E. Perez, Y. A. Bahnassey, W. M. Breene, Starch/Stärke 1993, 45, 211.
- 71M. E. Villarreal, P. D. Ribotta, L. B. Iturriaga, LWT–Food Sci. Technol. 2013, 51, 441.
- 72K. N. Jan, P. S. Panesar, J. C. Rana, S. Singh, Int. J. Biol. Macromol. 2017, 102, 315.
- 73G. Li, F. Zhu, Food Chem. 2018, 241, 380.
- 74G. Li, F. Zhu, Carbohydr. Polym. 2017, 158, 124.
- 75G. Li, F. Zhu, Carbohydr. Polym. 2018, 181, 851.
- 76H. Ehara, Y. Toyoda, D. V. Johnson, Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods, Springer, Singapore 2018.
10.1007/978-981-10-5269-9 Google Scholar
- 77J. Pinyo, P. Luangpituksa, M. Suphantharika, C. Hansawasdi, Wongsagonsup, Starch/Stärke 2016, 68, 47.
- 78M. N. Abdorreza, M. Robal, L. H. Cheng, A. Y. Tajul, A. A. Karim, LWT–Food Sci. Technol. 2012, 46, 135.
- 79F. Zhu, Food Hydrocolloids 2019, 96, 412.
- 80N. F. Zainal Abiddin, A. Yusoff, N. Ahmad, Food Hydrocolloids 2018, 75, 138.
- 81Z. Othman, O. Hassan, K. Hashim, Radiat. Phys. Chem. 2015, 109, 48.
- 82R. C. T. Barbi, G. L. Teixeira, P. S. Hornung, S. Avila, R. Hoffmann-Ribani, Food Hydrocolloids 2018, 77, 646.
- 83M. H. F. Felisberto, A. L. Beraldo, M. S. Costa, F. L. Boas, C. M. L. Franco, M. T. P. S. Clerici, Food Hydrocolloids 2019, 87, 101.
- 84C. A. Ferraz, R. L. S. Fontes, G. C. Fontes-Sant'Ana, V. Calado, E. O. López, E. M. H. M. Rocha-Leão, Starch/Stärke 2019, 71, 1800023.
- 85A. Chávez-Salazar, L. A. Bello-Pérez, E. Agama-Acevedo, F. J. Castellanos-Galeano, C. I. Álvarez-Barreto, G. Pacheco-Vargas, Int. J. Biol. Macromol. 2017, 98, 240.
- 86H. Jiang, Y. Zhang, Y. Hong, Y. Bi, Z. Gu, L. Cheng, Z. Li, C. Li, Food Hydrocolloids 2015, 49, 192.
- 87F. Noor, J. Rahman, S. Mahomud, S. Akter, A. I. Talukder, M. Ahmed, Int. J. Nutr. Food Sci. 2014, 3, 347.
- 88V. Z. Pinto, N. L. Vanier, V. G. Deon, K. Moomand, S. L. M. El Halal, E. R. Zavareze, L.-T. Lim, A. R. G. Dias, Food Chem. 2015, 187, 98.
- 89M. H. F. Felisberto, A. L. Beraldo, M. S. Costa, F. V. Boas, C. M. L. Franco, M. T. P. S. Clerici, Food Res. Int. 2019, 124, 222.
- 90P. R. Correia, M. L. Beirão-da-Costa, Food Bioprod. Process. 2012, 90, 309.