Theoretical Prediction of Thermoelectric Performance for Layered LaAgOX (X = S, Se) Materials in Consideration of the Four-Phonon and Multiple Carrier Scattering Processes
Shulin Bai
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorJingyi Zhang
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorMengxiu Wu
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorDongming Luo
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorDa Wan
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorXiaodong Li
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorCorresponding Author
Shuwei Tang
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
E-mail: [email protected]
Search for more papers by this authorShulin Bai
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorJingyi Zhang
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorMengxiu Wu
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorDongming Luo
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorDa Wan
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorXiaodong Li
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Search for more papers by this authorCorresponding Author
Shuwei Tang
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000 China
Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Inspired by the experimental achievement of layered LaCuOX (X = S, Se) with superior thermoelectric (TE) performance, the TE properties of Ag-based isomorphic LaAgOX are systemically investigated by the first-principles calculation. The LaAgOS and LaAgOSe are direct semiconductors with wide bandgaps of ≈2.50 and ≈2.35 eV. Essential four-phonon and multiple carrier scattering mechanisms are considered in phonon and electronic transport calculations to improve the accuracy of the figure-of-merit (ZT). The p-type LaAgOX (X = S, Se) shows excellent TE performance on account of the large Seebeck coefficient originated from the band convergency and low thermal conductivity caused by the strong phonon–phonon scattering. Consequently, the optimal ZTs along the out-of-plane direction decrease in the order of n-type LaAgOSe (≈2.88) > p-type LaAgOSe (≈2.50) > p-type LaAgOS (≈2.42) > n-type LaAgOS (≈2.27) at 700 K, and the optimal ZTs of ≈1.16 and ≈1.29 are achieved for p-type LaAgOS and LaAgOSe at the same temperature. The present work would provide a deep insight into the phonon and electronic transport properties of LaAgOX (X = S, Se), but also could shed light on the way for the rational design of state-of-the-art heteroanionic materials for TE application.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
smtd202201368-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Liu, W. Gao, F. Guo, W. Cai, Q. Zhang, J. Sui, Mater. Lab. 2022, 1, 220038.
- 2C. Gayner, K. K. Kar, W. Kim, Mater. Today Energy 2018, 9, 359.
- 3X. Zhang, L.-D. Zhao, J. Materiomics 2015, 1, 92.
- 4J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, D. J. Singh, npj Comput. Mater. 2016, 2, 15015.
- 5L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science 2015, 351, 141.
- 6B. Qin, L.-D. Zhao, Mater. Lab 2022, 1, 220004.
- 7Y. Xiao, H. Wu, J. Cui, D. Wang, L. Fu, Y. Zhang, Y. Chen, J. He, S. J. Pennycook, L.-D. Zhao, Energy Environ. Sci. 2018, 11, 2486.
- 8G. Tan, F. Shi, J. W. Doak, H. Sun, L.-D. Zhao, P. Wang, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Energy Environ. Sci. 2015, 8, 267.
- 9D. Wang, X. Zhang, Y. Yu, L. Xie, J. Wang, G. Wang, J. He, Y. Zhou, Q. Pang, J. Shao, L.-D. Zhao, J. Alloys Compd. 2019, 773, 571.
- 10Y. Xiao, H. Wu, D. Wang, C. Niu, Y. Pei, Y. Zhang, I. Spanopoulos, I. T. Witting, X. Li, S. J. Pennycook, G. J. Snyder, M. G. Kanatzidis, L.-D. Zhao, Adv. Energy Mater. 2019, 9, 1900414.
- 11Z. Huang, Y. Zhang, H. Wu, S. J. Pennycook, L.-D. Zhao, ACS Appl. Energy Mater. 2019, 2, 8236.
- 12Y. Xiao, L.-D. Zhao, npj Quant. Mater. 2018, 3, 55.
- 13X. Zhang, D. Wang, H. Wu, M. Yin, Y. Pei, S. Gong, L. Huang, S. J. Pennycook, J. He, L.-D. Zhao, Energy Environ. Sci. 2017, 10, 2420.
- 14Y. Xiao, Mater. Lab. 2022, 1, 220025.
- 15Y. Pei, C. Chang, Z. Wang, M. Yin, M. Wu, G. Tan, H. Wu, Y. Chen, L. Zheng, S. Gong, T. Zhu, X. Zhao, L. Huang, J. He, M. G. Kanatzidis, L.-D. Zhao, J. Am. Chem. Soc. 2016, 138, 16364.
- 16L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.
- 17S. Tang, M. Wu, S. Bai, D. Luo, J. Zhang, D. Wan, X. Li, J. Mater. Chem. C 2022, 10, 16116.
- 18D. Wu, L.-D. Zhao, S. Hao, Q. Jiang, F. Zheng, J. W. Doak, H. Wu, H. Chi, Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis, J. He, J. Am. Chem. Soc. 2014, 136, 11412.
- 19S. Bai, S. Tang, M. Wu, D. Luo, J. Zhang, D. Wan, X. Li, J. Alloys Compd. 2023, 930, 167485.
- 20S. Tang, M. Wu, S. Bai, D. Luo, J. Zhang, S. Yang, J. Alloys Compd. 2022, 907, 164439.
- 21S. Tang, S. Bai, M. Wu, D. Luo, D. Wang, S. Yang, L.-D. Zhao, Mater. Today Energy 2022, 23, 100914.
- 22S. Tang, S. Bai, M. Wu, D. Luo, J. Zhang, W. Sun, S. Yang, Phys. Chem. Chem. Phys. 2022, 24, 5185.
- 23E. S. Toberer, A. Zevalkink, G. J. Snyder, J. Mater. Chem. 2011, 21, 15843.
- 24R. G. Pearson, J. Chem. Educ. 1968, 45, 581.
- 25S. J. Clarke, P. Adamson, S. J. C. Herkelrath, O. J. Rutt, D. R. Parker, M. J. Pitcher, C. F. Smura, Inorg. Chem. 2008, 47, 8473.
- 26S. Muir, M. A. Subramanian, Prog. Solid. State Chem. 2012, 40, 41.
- 27H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli, K. R. Poeppelmeier, Nat. Commun. 2018, 9, 772.
- 28C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science 2018, 360, 778.
- 29K. Ueda, J. Appl. Phys. 2005, 98, 043506.
- 30D. O. Scanlon, J. Buckeridge, C. R. A. Catlow, G. W. Waston, J. Mater. Chem. C 2014, 2, 3429.
- 31N. Wang, C. Shen, Z. Sun, B. Li, H. Xiao, X. Zu, H. Zhang, Z. Yin, L. Qiao, ACS Appl. Energy Mater. 2022, 5, 6943.
- 32L.-D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. P. Gaudart, N. Dragoe, Appl. Phys. Lett. 2010, 97, 092118.
- 33Y.-L. Pei, J. He, J.-F. Li, F. Li, Q. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, L.-D. Zhao, NPG Asia Mater. 2013, 5, e47.
- 34L.-D. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan, N. Dragoe, Energy Environ. Sci. 2014, 7, 2900.
- 35G.-K. Ren, J.-L. Lan, S. Butt, K. J. Ventura, Y.-H. Lin, C.-W. Nan, RSC Adv. 2015, 5, 69878.
- 36N. Wang, M. Li, H. Xiao, X. Zu, L. Qiao, Phys. Rev. Appl. 2020, 13, 024038.
- 37N. Wang, M. Li, H. Xiao, Z. Gao, Z. Liu, X. Zu, S. Li, L. Qiao, npj Comput. Mater. 2021, 7, 18.
- 38P. Vaqueiro, R. A. R. A. Orabi, S. D. N. Luu, G. Guélou, A. V. Powell, R. I. Smith, J.-P. Smith, J.-P. Song, D. Wee, M. Fornari, Phys. Chem. Chem. Phys. 2015, 17, 31735.
- 39M. U. Farooq, S. Butt, K. Gao, X. L. Pang, X. Sun, Asfandiyar, F. Mohmed, A. Ahmad, A. Mahmood, N. Mahmood, J. Alloys Compd. 2017, 691, 572.
- 40C. Zhang, J. He, R. McClain, H. Xie, S. Cai, L. N. Walters, J. Shen, F. Ding, X. Zhou, C. D. Malliakas, J. M. Rondinelli, M. G. Kanatzidis, C. Wolverton, V. P. Dravid, K. R. Poeppelmeier, J. Am. Chem. Soc. 2022, 144, 2569.
- 41Q. Wang, Z. Zeng, Y. Chen, Phys. Rev. B 2021, 104, 235205.
- 42X. Yang, T. Feng, J. Li, X. Ruan, Phys. Rev. B 2019, 100, 245203.
- 43Z. Han, X. Yang, W. Li, T. Feng, X. Ruan, Comput. Phys. Commun. 2022, 270, 108179.
- 44H. Shao, D. Ding, L. Zhang, C.-K. Dong, H. Zhang, Mater. Today Phys. 2022, 27, 100756.
- 45N. S. Fedorova, A. Cepellotti, B. Kozinsky, Adv. Funct. Mater. 2022, 32, 2111354.
- 46S. Bai, M. Wu, J. Zhang, D. Luo, D. Wan, X. Li, S. Tang, Chem. Eng. J. 2023, 455, 140832.
- 47S. Bai, S. Tang, M. Wu, D. Luo, J. Zhang, D. Wan, S. Yang, Appl. Surf. Sci. 2022, 599, 153962.
- 48P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 49J. Hafner, J. Comput. Chem. 2008, 29, 2044.
- 50Z. Wu, R. E. Cohen, Phys. Rev. B 2006, 73, 235116.
- 51J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.
- 52A. Togo, I. Tanaka, Scripta Mater. 2015, 108, 1.
- 53I. S. Novikov, K. Gubaev, E. V. Podryabinkin, A. V. Shapeev, Mach. Learn. Sci. Technol. 2020, 2, 025002.
10.1088/2632-2153/abc9fe Google Scholar
- 54E. V. Podryabinkin, E. V. Tikhonov, A. V. Shapeev, A. R. Oganov, Phys. Rev. B 2019, 99, 064114.
- 55M. E. Tuckerman, P. J. Ungar, T. von Rosenvinge, M. L. Klein, J. Phys. Chem. 1996, 100, 12878.
- 56B. Mortazavi, E. V. Podryabinkin, I. S. Novikov, T. Rabczuk, X. Zhuang, A. V. Shapeev, Comput. Phys. Commun. 2021, 258, 107583.
- 57J. Sun, D. Guo, H. Zhang, Z. Xu, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Alloys Compd. 2022, 906, 164299.
- 58W. Li, J. Carrete, N. A. Katcho, N. Mingo, Comput. Phys. Commun. 2014, 185, 1747.
- 59A. M. Ganose, J. Park, A. Faghaninia, R. W. Robinson, K. A. Person, A. Jain, Nat. Commun. 2021, 12, 2222.
- 60S. Poncé, E. R. Margine, C. Verdi, F. Giustino, Comput. Phys. Commun. 2016, 209, 116.
- 61K. B. Spooner, A. M. Ganose, W. W. W. Leung, J. Buckeridge, B. A. D. Williamson, R. G. Palgrave, D. O. Scanlon, Chem. Mater. 2021, 33, 7441.
- 62G. K. H. Madsen, J. Carrete, M. J. Verstrate, Comput. Phys. Commun. 2018, 231, 140.
- 63P. S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L. G. Akselrud, B. A. Popovkin, J. Solid State Chem. 1995, 118, 74.
- 64R. Pöttgen, D. Johrendt, Z. Naturforsch. B 2008, 63, 1135.
- 65J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, Nat. Commun. 2014, 5, 4475.
- 66Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, Y. Cai, Adv. Mater. 2016, 28, 2399.
- 67Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, Adv. Mater. 2017, 29, 1604230.
- 68A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, H. G. von Schnering, Angew. Chem., Int. Ed. 1992, 31, 187.
- 69Y. Xiao, L.-D. Zhao, Science 2020, 367, 1196.
- 70A. Miglio, C. P. Heinrich, W. Tremel, G. Hautier, W. G. Zeier, Adv. Sci. 2017, 4, 1700080.
10.1002/advs.201700080 Google Scholar
- 71D. Zou, S. Xie, Y. Liu, J. Lin, J. Li, J. Mater. Chem. A 2013, 1, 8888.
- 72V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.
- 73S. K. Saha, G. Dutta, Phys. Rev. B 2016, 94, 125209.
- 74W. Voigt, Wechselbeziehungen zwischen zwei Tensortripeln, Vieweg+Teubner Verlag, Wiesbaden 1966, pp. 560–800.
- 75A. Reuss, Z. Angew Math. Mech. 1929, 9, 49.
- 76R. Hill, Proc. Phys. Soc. 2002, 65, 349.
10.1088/0370-1298/65/5/307 Google Scholar
- 77S. F. Pugh, Philos. Mag. 1954, 45, 367.
- 78D. H. Chuang, W. R. Buessem, J. Appl. Phys. 1967, 38, 2010.
- 79Y. Cheng, R. He, Y. Xia, T. Han, L. Fang, S. Huang, B. Liu, Phys. Rev. B 2022, 105, 064106.
- 80D. T. Morelli, J. P. Heremans, Appl. Phys. Lett. 2002, 81, 5126.
- 81G. A. Slack, J. Phys. Chem. Solids 1973, 34, 321.
- 82D. A. Broido, L. Lindsay, A. Ward, Phys. Rev. B 2012, 86, 115203.
- 83T. Feng, L. Lindsay, X. Ruan, Phys. Rev. B 2017, 96, 161201.
- 84A. Shafique, A. Samad, Y.-H. Shin, Phys. Chem. Chem. Phys. 2017, 19, 20677.
- 85S. S. Naghavi, J. He, Y. Xia, C. Wolverton, Chem. Mater. 2018, 30, 5639.
- 86J. Ma, Y. Chen, W. Li, Phys. Rev. B 2018, 97, 205207.
- 87J. Cao, J. D. Qierales-Flores, A. R. Murphy, S. Fashy, I. Savić, Phys. Rev. B 2018, 98, 205202.
- 88G. Casu, A. Bosin, V. Fiorentini, Phys. Rev. Mater. 2020, 4, 075404.
- 89D. Guo, C. Hu, Y. Xi, K. Zhang, J. Phys. Chem. C 2013, 117, 21597.
- 90Y.-L. Pei, Y. Liu, J. Alloys Compd. 2012, 514, 40.
- 91S. Deng, L. Li, Q. J. Guy, Y. Zhang, Phys. Chem. Chem. Phys. 2019, 21, 18161.
- 92G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123.
- 93M. Jonson, G. D. Mahan, Phys. Rev. B 1980, 21, 4223.
- 94H. Zhu, T. Su, H. Li, C. Pu, D. Zhou, P. Zhu, X. Wang, J. Eur. Ceram. Soc. 2017, 37, 1541.