Achieving Ultrahigh Energy-Density Aqueous Supercapacitors via a Novel Acidic Radical Adsorption Capacity-Activation Mechanism in Ni(SeO3)/Metal Sulfide Heterostructure
Jinyue Song
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorHongguang Fan
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorLichong Bai
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorYanpeng Wang
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorCorresponding Author
Yongcheng Jin
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShuang Liu
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorXiaohui Xie
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorWansu Zheng
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorCorresponding Author
Wei Liu
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJinyue Song
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorHongguang Fan
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorLichong Bai
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorYanpeng Wang
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorCorresponding Author
Yongcheng Jin
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShuang Liu
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorXiaohui Xie
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorWansu Zheng
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
Search for more papers by this authorCorresponding Author
Wei Liu
Institute of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Transitional metal chalcogenide (TMC) is considered as one promising high-capacity electrode material for asymmetric supercapacitors. More evidence indicates that TMCs have the same charge storage mechanism as hydroxides, but the reason why TMC electrode materials always provide higher capacity is rare to insight. In this work, a NixCoyMnzS/Ni(SeO3) (NCMS/NSeO) heterostructure is prepared on Ni-plated carbon cloth, validating that both NCMS and NSeO can be transformed into hydroxides in electrochemical process as accompanying with the formation of SeO32- and SOx2− in confined spaces of NCMS/NSeO/Ni sandwich structure. Based on density functional theory calculation and experimental results, a novel space-confined acidic radical adsorption capacity-activation mechanism is proposed for the first time, which can nicely explain the capacity enhancement of NCMS/NSeO electrode materials. Thanks to the unique capacity enhancement mechanism and stable NCMS/NSeO/Ni sandwich structure, the optimized electrodes exhibit a high capacity of 536 mAh g−1 at 1 A g−1 and the impressive rate capability of 140.5 mAh g−1 at the amazing current density of 200 A g−1. The assembled asymmetric supercapacitor achieves an ultrahigh energy density of 141 Wh Kg−1 and an impressive high-rate capability and cyclability combination with 124% capacitance retention after 10 000 cycles at a large current density of 50 A g−1.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202201353-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
smtd202201353-sup-0002-VideoS1.mp410.6 MB | Supplemental Video 1 |
smtd202201353-sup-0003-VideoS2.mp46.3 MB | Supplemental Video 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. Dong, H. Jin, R. Wang, J. Zhang, X. Feng, C. Yan, S. Chen, S. Wang, J. Wang, J. Lu, Adv. Energy Mater. 2018, 8, 1702695; b) L. Borchardt, D. Leistenschneider, J. Haase, M. Dvoyashkin, Adv. Energy Mater. 2018, 8, 1800892; c) T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai, Z. Chen, J. Zhang, X. Zhang, L. Shen, Adv. Funct. Mater. 2021, 32, 2107720.
- 2a) S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D. E. Jiang, V. Presser, V. Augustyn, Chem. Rev. 2020, 120, 6738; b) T. Brousse, D. Bélanger, J. W. Long, J Electrochem Soc 2015, 162, A5185.
- 3a) Y. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018, 118, 9233; b) B. Liu, X. Hao, T. Zhai, S. Sun, H. Zhang, P. A. Koudakan, C. Wei, G. Wang, H. Xia, Energy Storage Mater. 2022, 48, 403; c) Q. Zhang, J. Sun, Z. Pan, J. Zhang, J. Zhao, X. Wang, C. Zhang, Y. Yao, W. Lu, Q. Li, Y. Zhang, Z. Zhang, Nano Energy 2017, 39, 219.
- 4J. Chang, S. Zhang, M. Shi, J. Feng, Z. Liu, T. Wei, Z. Fan, Adv. Funct. Mater. 2022, 32, 2109225.
- 5a) L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Mater. Today 2019, 25, 35; b) I. Hussain, S. Sahoo, C. Lamiel, T. T. Nguyen, M. Ahmed, C. Xi, S. Iqbal, A. Ali, N. Abbas, M. S. Javed, K. Zhang, Energy Storage Mater. 2022, 47, 13; c) J. M. Gonçalves, M. I. da Silva, H. E. Toma, L. Angnes, P. R. Martins, K. Araki, J. Mater. Chem. A 2020, 8, 10534.
- 6a) Z. Sun, H. Lin, F. Zhang, X. Yang, H. Jiang, Q. Wang, F. Qu, J. Mater. Chem. A 2018, 6, 14956; b) G. Li, X. Cui, B. Song, H. Ouyang, K. Wang, Y. Sun, Y. Wang, Chem. Eng. J. 2020, 388, 124319; c) Q. Liu, X. Hong, X. Zhang, W. Wang, W. Guo, X. Liu, M. Ye, Chem. Eng. J. 2019, 356, 985.
- 7a) F. Hekmat, M. Ezzati, S. Shahrokhian, H. E. Unalan, J. Electroanalytical Chem. 2021, 890, 115244; b) Y. Zhou, Z. Jia, S. Zhao, P. Chen, Y. Wang, T. Guo, L. Wei, X. Cui, X. Ouyang, X. Wang, J. Zhu, J. Sun, S. Pan, Y. Fu, Chem. Eng. J. 2021, 416, 129500.
- 8M. Dong, Z. Wang, X. Li, H. Guo, J. Wang, G. Yan, Chem. Eng. Sci. 2020, 221, 115709.
- 9S. Chen, Y. Li, B. Wu, Z. Wu, F. Li, J. Wu, P. Liu, H. Li, Electrochim. Acta 2018, 275, 40.
- 10a) Y. Li, W. Zhang, X. Yang, J. Zhang, Z. Wang, H. Zhu, Nano Energy 2021, 87, 106136; b) D. Yang, Y. Song, M. Y. Zhang, Z. Qin, R. Dong, C. Li, X. X. Liu, Adv. Funct. Mater. 2021, 31, 2100477; c) W. Xu, T. Wang, H. Wang, S. Zhu, Y. Liang, Z. Cui, X. Yang, A. Inoue, Energy Storage Mate 2019, 17, 300.
- 11K. Tao, Y. Gong, J. Lin, Nano Energy 2019, 55, 65.
- 12Y. Shi, W. Du, W. Zhou, C. Wang, S. Lu, S. Lu, B. Zhang, Angew. Chem., Int. Ed. Engl. 2020, 59, 22470.
- 13F. Zhao, D. Zheng, Y. Liu, F. Pan, Q. Deng, C. Qin, Y. Li, Z. Wang, Chem. Eng. J. 2021, 415, 128871.
- 14Y. Chen, L. Wang, H. Gan, Y. Jiang, J. Feng, J. Liu, X. Shi, J. Energy Storage 2022, 47, 103625.
- 15Y. Zhang, X. Wang, M. Shen, X. Fu, M. Huang, X. Liu, Y. X. Zhang, J. Mater. Sci. 2018, 54, 4821.
- 16X. Zhao, J. Feng, J. Liu, W. Shi, G. Yang, G. C. Wang, P. Cheng, Angew. Chem., Int. Ed. Engl. 2018, 57, 9790.
- 17T. Kavinkumar, S. Seenivasan, H. H. Lee, H. Jung, J. W. Han, D.-H. Kim, Nano Energy 2021, 81, 105667.
- 18G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.
- 19a) R. Zhang, J. Dong, W. Zhang, L. Ma, Z. Jiang, J. Wang, Y. Huang, Nano Energy 2022, 91, 106633; b) S. Sun, D. Rao, T. Zhai, Q. Liu, H. Huang, B. Liu, H. Zhang, L. Xue, H. Xia, Adv. Mater. 2020, 32, 2005344.
- 20X. Gao, X. Liu, D. Wu, B. Qian, Z. Kou, Z. Pan, Y. Pang, L. Miao, J. Wang, Adv. Funct. Mater. 2019, 29, 1903879.
- 21a) Z. Ma, R. Zheng, Y. Liu, Y. Ying, W. Shi, J. Colloid Interface Sci. 2021, 602, 627; b) Z. Xu, C. Du, H. Yang, J. Huang, X. Zhang, J. Chen, Chem. Eng. J. 2021, 421, 127871; c) W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang, J. Liu, Chem. Eng. J. 2019, 371, 461; d) A. Mohammadi Zardkhoshoui, B. Ameri, S. Saeed Hosseiny Davarani, Chem. Eng. J. 2021, 422, 129953; e) J. Huang, J. Wei, Y. Xiao, Y. Xu, Y. Xiao, Y. Wang, L. Tan, K. Yuan, Y. Chen, ACS Nano 2018, 12, 3030; f) S. Sahoo, R. Mondal, D. J. Late, C. S. Rout, Microporous and Mesoporous Mater 2017, 244, 101; g) W. Wu, C. Zhao, C. Wang, T. Liu, L. Wang, J. Zhu, Appl. Surf. Sci. 2021, 563, 150324; h) S. Wang, P. Zhang, C. Liu, Colloids Surf., A 2021, 616, 126334.
- 22a) T. Xu, G. Li, L. Zhao, Chem. Eng. J. 2018, 336, 602; b) V. T. Chebrolu, B. Balakrishnan, D. Chinnadurai, H. J. Kim, Adv. Mater. Technol. 2019, 5, 1900873; c) J. Wang, Y. Huang, X. Han, S. Zhang, M. Wang, J. Yan, C. Chen, M. Zong, J. Colloid Interface Sci. 2021, 603, 440; d) F. Qiao, W. Liu, S. Wang, F. Lin, Y. Chen, M. Yuan, Z. Weng, S. Wang, J. Zheng, Y. Zhao, J. Alloys Compd. 2021, 870, 159393; e) K. Song, W. Li, R. Yang, Y. Zheng, X. Chen, X. Wang, G. Chen, W. Lv, Electrochim. Acta 2021, 388, 138663.
- 23X. Bo, Y. Li, X. Chen, C. Zhao, Chem. Mater. 2020, 32, 4303.
- 24X. Yang, H. Zhang, B. Yu, Y. Liu, W. Xu, Z. Wu, Energy Technol. 2022, 10.
- 25a) X. Xu, F. Song, X. Hu, Nat. Commun. 2016, 7, 12324; b) T. X. Nguyen, Y. H. Su, C. C. Lin, J. M. Ting, Adv. Funct. Mater. 2021, 31, 2106229.
- 26T. Zhai, S. Sun, X. Liu, C. Liang, G. Wang, H. Xia, Adv. Mater. 2018, 30, 1706640.
- 27a) B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng, X. Deng, Y. Chen, R. Murphy, X. Xiong, B. Song, C. P. Wong, M. S. Wang, M. Liu, Adv. Energy Mater. 2017, 8, 1702247; b) J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao, S. Dai, H.-H. Wu, K. Zhang, D. Ding, Y. Wu, M. Liu, M.-S. Wang, Nano Energy 2019, 57, 22.
- 28H. Fan, J. Song, L. Bai, Y. Wang, Y. Jin, S. Liu, X. Xie, W. Zheng, W. Liu, Energy Storage Mater. 2023, 55, 84.
- 29a) Q. Zhang, Z. Liu, B. Zhao, Y. Cheng, L. Zhang, H.-H. Wu, M.-S. Wang, S. Dai, K. Zhang, D. Ding, Y. Wu, M. Liu, Energy Storage Mater. 2019, 16, 632; b) J. Kang, Y. Xue, J. Yang, Q. Hu, Q. Zhang, L. Gu, A. Selloni, L. M. Liu, L. Guo, J. Am. Chem. Soc. 2022, 144, 8969.
- 30C. Huang, S. Lv, A. Gao, J. Ling, F. Yi, J. Hao, M. Wang, Z. Luo, D. Shu, Chem. Eng. J. 2022, 431, 134083.
- 31J. Chen, L. Zhang, W. Bai, Y. Zhou, C. Li, T. Guo, P. Chen, J. Zhu, X. Wang, Y. Fu, Electrochim. Acta 2020, 337, 135824.
- 32a) J. Fu, L. Li, J. M. Yun, D. Lee, B. K. Ryu, K. H. Kim, Chem. Eng. J. 2019, 375, 121939; b) S. Hou, Y. Lian, Y. Bai, Q. Zhou, C. Ban, Z. Wang, J. Zhao, H. Zhang, Electrochim. Acta 2020, 341, 136053; c) R. Manikandan, C. Justin Raj, G. Nagaraju, R. Velayutham, S. E. Moulton, J. Puigdollers, B. Chul Kim, Chem. Eng. J. 2021, 414, 128924; d) D. Wu, X. Xie, J. Zhang, Y. Ma, C. Hou, X. Sun, X. Yang, Y. Zhang, H. Kimura, W. Du, Chem. Eng. J. 2022, 446, 137262.
- 33K. G. Cho, H. S. Kim, S. S. Jang, H. Kyung, M. S. Kang, K. H. Lee, W. C. Yoo, Adv. Funct. Mater. 2020, 30, 2002053.