Manipulating Stable Layered P2-Type Cathode via a Co-Substitution Strategy for High Performance Sodium Ion Batteries
Jun Xiao
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 Australia
Search for more papers by this authorHong Gao
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorKaikai Tang
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorMengqi Long
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorJun Chen
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Hao Liu
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 Australia
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Guoxiu Wang
Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 Australia
E-mail: [email protected], [email protected]
Search for more papers by this authorJun Xiao
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 Australia
Search for more papers by this authorHong Gao
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorKaikai Tang
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorMengqi Long
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorJun Chen
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Hao Liu
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 Australia
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Guoxiu Wang
Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 Australia
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Mn-based layered transition metal oxides (TMOs) are promising cathodes for sodium ion batteries (SIBs) due to their eco-friendly character and abundant natural reserves. However, the complex phase changes and structural instability of the Mn-based layered TMO cathodes during electrochemical process are major hindrances to meet the commercial application. Cation substitution is an effective way to stabilize the structure and accelerate the Na+ kinetics of cathode materials. Herein, an intriguing layered P2-type Mn-based Na0.7Li0.06Zn0.06Ni0.21Mn0.67O2 material is reported by substitution of Li and Zn for partial Ni. The occupation of inert elements on Ni sites could well maintain the crystal structure, giving rise to a prominent cycle life and improved electrochemical kinetics. The as-prepared electrode presents an initial discharge capacity of 131.8 mA h g−1 at 20 mA g−1 and preserves 91.9% capacity after 100 cycles, accompanied with enexcellent rate performance (108 mA h g−1 at 500 mA g−1). Furthermore, the single-phase reaction mechanism during the sodiation/desodiation process is verified by in situ X-ray diffraction. Additionally, theory computations prove the decreased migration energy barriers and enhanced Na+ kinetics ulteriorly. This dual-doping strategy inspires an effective way to produce high performance cathode materials for SIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202101292-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Yang, P. F. Wang, J. Z. Guo, Z. M. Chen, W. L. Pang, K. C. Huang, Y. G. Guo, X. L. Wu, J. P. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 34272.
- 2C. L. Zhao, Q. D. Wang, Z. P. Yao, J. L. Wang, B. Sanchez-Lengeling, F. X. Ding, X. G. Qi, Y. X. Lu, X. D. Bai, B. H. Li, H. Li, A. Aspuru-Guzik, X. J. Huang, C. Delmas, M. Wagemaker, L. Q. Chen, Y. S. Hu, Science 2020, 370, 708.
- 3M. M. Rahman, Y. H. Xu, H. Cheng, Q. L. Shi, R. H. Kou, L. Q. Mu, Q. Liu, S. H. Xia, X. H. Xiao, C.-J. Sun, D. Sokaras, D. Nordlund, J.-C. Zheng, Y. J. Liu, F. Lin, Energy Environ. Sci. 2018, 11, 2496.
- 4D. D. Wang, K. K. Tang, J. Xiao, X. Li, M. Q. Long, J. Chen, H. Gao, W. H. Chen, C. T. Liu, H. Liu, Sustainable Mater. Technol. 2021, 29, 00302.
- 5H. Liu, X. X. Liu, W. Li, X. Guo, Y. Wang, G. X. Wang, D. Y. Zhao, Adv. Energy Mater. 2017, 7, 1700283.
- 6X. L. Li, J. Bao, Y. F. Li, D. Chen, C. Ma, Q. Q. Qiu, X. Y. Yue, Q. C. Wang, Y. N. Zhou, Adv. Sci. 2021, 8, 2004448.
- 7J. Y. Xia, W. W. Wu, K. X. Fang, X. H. Wu, Carbon 2020, 157, 693.
- 8Q. Q. Zhao, F. K. Butt, Z. F. Guo, L. Q. Wang, Y. Q. Zhu, X. Y. Xu, X. L. Ma, C. B. Cao, Chem. Eng. J. 2021, 403, 126308.
- 9J. Xiao, X. Li, K. K. Tang, D. D. Wang, M. Q. Long, H. Gao, W. H. Chen, C. T. Liu, H. Liu, G. X. Wang, Mater. Chem. Front. 2021, 5, 3735.
- 10X. Guo, X. Q. Xie, S. Choi, Y. F. Zhao, H. Liu, C. Y. Wang, S. Chang, G. X. Wang, J. Mater. Chem. A 2017, 5, 12445.
- 11J. J. Guo, J. J. Huo, Y. Liu, W. J. Wu, Y. Wang, M. H. Wu, H. Liu, G. X. Wang, Small Methods 2019, 3, 1900159.
- 12X. L. Li, T. Wang, Y. F. Yuan, X. Y. Yue, Q. C. Wang, J. Y. Wang, J. Zhong, R. Q. Lin, Y. Yao, X. J. Wu, X. Q. Yu, Z. W. Fu, Y. Y. Xia, X. Q. Yang, T. C. Liu, K. Amine, Z. Shadike, Y. N. Zhou, J. Lu, Adv. Mater. 2021, 33, 2008194.
- 13X. L. Li, J. Bao, Z. Shadike, Q. C. Wang, X. Q. Yang, Y. N. Zhou, D. L. Sun, F. Fang, Angew. Chem., Int. Ed. 2021, 60, 22026.
- 14Q. C. Wang, J. K. Meng, X. Y. Yue, Q. Q. Qiu, Y. Song, X. J. Wu, Z. W. Fu, Y. Y. Xia, Z. Shadike, J. Wu, X. Q. Yang, Y. N. Zhou, J. Am. Chem. Soc. 2019, 141, 840.
- 15Y. X. Wang, L. G. Wang, H. Zhu, J. Chu, Y. J. Fang, L. Wu, L. Huang, Y. Ren, C. J. Sun, Q. Liu, X. P. Ai, H. X. Yang, Y. L. Cao, Adv. Funct. Mater. 2020, 30, 1910327.
- 16K. Kaliyappan, W. Xaio, T. K. Sham, X. L. Sun, Adv. Funct. Mater. 2018, 28, 1801898.
- 17A. Konarov, H. J. Kim, J. H. Jo, N. Voronina, Y. Lee, Z. Bakenov, J. Kim, S. T. Myung, Adv. Energy Mater. 2020, 10, 2001111.
- 18C. C. Wang, L. J. Liu, S. Zhao, Y. C. Liu, Y. B. Yang, H. J. Yu, S. Lee, G. H. Lee, Y. M. Kang, R. Liu, F. J. Li, J. Chen, Nat. Commun. 2021, 12, 2256.
- 19J. P. Wu, J. Song, K. H. Dai, Z. Q. Zhuo, L. A. Wray, G. Liu, Z. X. Shen, R. Zeng, Y. H. Lu, W. L. Yang, J. Am. Chem. Soc. 2017, 139, 18358.
- 20Y. You, H. R. Yao, S. Xin, Y. X. Yin, T. T. Zuo, C. P. Yang, Y. G. Guo, Y. Cui, L. J. Wan, J. B. Goodenough, Adv. Mater. 2016, 28, 7243.
- 21W. L. Wang, Y. Gang, Z. Hu, Z. C. Yan, W. J. Li, Y. C. Li, Q. F. Gu, Z. X. Wang, S. L. Chou, H. K. Liu, S. X. Dou, Nat. Commun. 2020, 11, 980.
- 22M. Z. Chen, W. B. Hua, J. Xiao, D. Cortie, X. D. Guo, E. H. Wang, Q. F. Gu, Z. Hu, S. Indris, X. L. Wang, S. L. Chou, S. X. Dou, Angew. Chem., Int. Ed. 2020, 59, 2449.
- 23T. Zhu, P. Hu, X. P. Wang, Z. H. Liu, W. Luo, K. A. Owusu, W. W. Cao, C. W. Shi, J. T. Li, L. Zhou, L. Q. Mai, Adv. Energy Mater. 2019, 9, 1803436.
- 24Y. C. Liu, N. Zhang, F. F. Wang, X. B. Liu, L. F. Jiao, L.-Z. Fan, Adv. Funct. Mater. 2018, 28, 1801917.
- 25Y. J. Park, J. U. Choi, J. H. Jo, C. H. Jo, J. Kim, S. T. Myung, Adv. Funct. Mater. 2019, 29, 1901912.
- 26K. Kaliyappan, T. Or, Y. P. Deng, Y. F. Hu, Z. Y. Bai, Z. W. Chen, Adv. Funct. Mater. 2020, 30, 1910251.
- 27L. F. Yang, X. Li, J. Liu, S. Xiong, X. T. Ma, P. Liu, J. M. Bai, W. Q. Xu, Y. Z. Tang, Y. Y. Hu, M. L. Liu, H. L. Chen, J. Am. Chem. Soc. 2019, 141, 6680.
- 28Y. F. Zhu, Y. Xiao, W. B. Hua, S. Indris, S. X. Dou, Y. G. Guo, S. L. Chou, Angew. Chem., Int. Ed. 2020, 59, 9299.
- 29J. H. Jo, J. U. Choi, A. Konarov, H. Yashiro, S. Yuan, L. Y. Shi, Y.-K. Sun, S.-T. Myung, Adv. Funct. Mater. 2018, 28, 1705968.
- 30Q. Deng, F. H. Zheng, W. T. Zhong, Q. C. Pan, Y. Z. Liu, Y. P. Li, Y. J. Li, J. H. Hu, C. H. Yang, M. L. Liu, Chem. Eng. J. 2021, 404, 126446.
- 31Y. Y. Huang, Z. C. Yan, W. Luo, Z. W. Hu, G. X. Liu, L. L. Zhang, X. L. Yang, M. Y. Ou, W. J. Liu, L. Q. Huang, H. J. Lin, C.-T. Chen, J. H. Luo, S. Li, J. T. Han, S. L. Chou, Y. H. Huang, Energy Storage Mater. 2020, 29, 182.
- 32X. Cao, H. F. Li, Y. Qiao, X. Li, M. Jia, J. Cabana, H. S. Zhou, Adv. Energy Mater. 2020, 10, 1903785.
- 33P. Y. Hou, F. Li, Y. Y. Wang, J. M. Yin, X. J. Xu, J. Mater. Chem. A 2019, 7, 4705.
- 34Y. You, A. Dolocan, W. D. Li, A. Manthiram, Nano Lett. 2019, 19, 182.
- 35Y. C. Liu, C. C. Wang, S. Zhao, L. Zhang, K. Zhang, F. J. Li, J. Chen, Chem. Sci. 2021, 12, 1062.
- 36Q. J. Mao, R. Gao, Q. Y. Li, D. Ning, D. Zhou, G. Schuck, G. Schumacher, Y. M. Hao, X. F. Liu, Chem. Eng. J. 2020, 382, 122978.
- 37P. F. Zhou, X. L. Liu, J. Y. Weng, L. Wang, X. Z. Wu, Z. C. Miao, J. P. Zhao, J. Zhou, S. P. Zhuo, J. Mater. Chem. A 2019, 7, 657.
- 38K. Tang, Y. Huang, X. Xie, S. Cao, L. Liu, M. Liu, Y. H. Huang, B. B. Chang, Z. G. Luo, X. Y. Wang, Chem. Eng. J. 2020, 384, 123234.
- 39S. Y. Chu, C. C. Zhang, H. Xu, S. H. Guo, P. Wang, H. S. Zhou, Angew. Chem., Int. Ed. 2021, 60, 13366.
- 40J. Xiao, F. Zhang, K. K. Tang, X. Li, D. D. Wang, Y. Wang, H. Liu, M. H. Wu, G. X. Wang, ACS Cent. Sci. 2019, 5, 1937.
- 41Y. C. Liu, Q. Y. Shen, X. D. Zhao, J. Zhang, X. B. Liu, T. S. Wang, N. Zhang, L. F. Jiao, J. Chen, L. Z. Fan, Adv. Funct. Mater. 2019, 30, 1907837.
- 42C.-H. Jo, J.-H. Jo, H. Yashiro, S.-J. Kim, Y.-K. Sun, S.-T. Myung, Adv. Energy Mater. 2018, 8, 1702942.
- 43H. H. Sun, J. Y. Hwang, C. S. Yoon, A. Heller, C. B. Mullins, ACS Nano 2018, 12, 12912.
- 44X. S. Liu, G. M. Zhong, Z. M. Xiao, B. Z. Zheng, W. H. Zuo, K. Zhou, H. D. Liu, Z. T. Liang, Y. X. Xiang, Z. R. Chen, G. F. Ortiz, R. Q. Fu, Y. Yang, Nano Energy 2020, 76, 104997.
- 45Y.-N. Zhou, P.-F. Wang, Y.-B. Niu, Q. H. Li, X. Q. Yu, Y.-X. Yin, S. L. Xu, Y.-G. Guo, Nano Energy 2019, 55, 143.
- 46S. Mariyappan, T. Marchandier, F. Rabuel, A. Iadecola, G. Rousse, A. V. Morozov, A. M. Abakumov, J.-M. Tarascon, Chem. Mater. 2020, 32, 1657.
- 47P. F. Wang, Y. You, Y. X. Yin, Y. S. Wang, L. J. Wan, L. Gu, Y. G. Guo, Angew. Chem., Int. Ed. 2016, 55, 7445.
- 48T. Chen, J. Guo, Y. Zhuo, H. Hu, W. F. Liu, F. Liu, P. G. Liu, J. Yan, K. Y. Liu, Energy Storage Mater. 2019, 20, 263.
- 49Q. Y. Shen, X. D. Zhao, Y. C. Liu, Y. P. Li, J. Zhang, N. Zhang, C. H. Yang, J. Chen, Adv. Sci. 2020, 7, 2002199.
- 50Y. Xiao, P. F. Wang, Y. X. Yin, Y. F. Zhu, Y. B. Niu, X. D. Zhang, J. N. Zhang, X. Q. Yu, X. D. Guo, B. H. Zhong, Y. G. Guo, Adv. Mater. 2018, 30, 1803765.
- 51Q. C. Wang, Z. Shadike, X. L. Li, J. Bao, Q. Q. Qiu, E. Y. Hu, S. M. Bak, X. H. Xiao, L. Ma, X. J. Wu, X. Q. Yang, Y. N. Zhou, Adv. Energy Mater. 2021, 11, 2003455.
- 52L. Yang, S.-h. Luo, Y. F. Wang, Y. Zhan, Q. Wang, Y. H. Zhang, X. Liu, W. N. Mu, F. Teng, Chem. Eng. J. 2021, 404, 126578.
- 53K. Tang, Y. Huang, X. Xie, S. Cao, L. Liu, H. Liu, Z. G. Luo, Y. Wang, B. B. Chang, H. B. Shu, X. Y. Wang, Chem. Eng. J. 2020, 399, 125725.
- 54Z. C. Yan, L. Tang, Y. Y. Huang, W. B. Hua, Y. Wang, R. Liu, Q. F. Gu, S. Indris, S. L. Chou, Y. H. Huang, M. H. Wu, S. X. Dou, Angew. Chem., Int. Ed. 2019, 58, 1412.
- 55W. Li, Z. J. Yao, S. Z. Zhang, X. L. Wang, X. H. Xia, C. D. Gu, J. P. Tu, ACS Appl. Mater. Interfaces 2020, 12, 41477.
- 56Y. N. Zhou, P. F. Wang, X. D. Zhang, L. B. Huang, W. P. Wang, Y. X. Yin, S. L. Xu, Y. G. Guo, ACS Appl. Mater. Interfaces 2019, 11, 24184.
- 57C. Chen, B. Han, G. X. Lin, Q. Huang, S. Zhao, D. T. Zhang, C. Ma, D. G. Ivey, W. F. Wei, ACS Appl. Mater. Interfaces 2018, 10, 28719.