Self-Powered Linear Pressure Sensor Based on MXene/CNT Nanofluid Membrane
Kun Chen
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorMengyao Gao
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXiaoqing Liu
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorHaonan Xing
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorHuili Sun
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorHuatang Wang
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorAosen Lou
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXiaohui Song
Henan Academy of Sciences, Zhengzhou, 450046 China
Search for more papers by this authorCorresponding Author
Weijie Liu
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haizhong Guo
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorKun Chen
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorMengyao Gao
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXiaoqing Liu
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorHaonan Xing
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorHuili Sun
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorHuatang Wang
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorAosen Lou
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXiaohui Song
Henan Academy of Sciences, Zhengzhou, 450046 China
Search for more papers by this authorCorresponding Author
Weijie Liu
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haizhong Guo
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001 China
Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Ion channels, which own efficient, accurate, and selective ion transport ability, play a key role in maintaining cell homeostasis, participating in signal transduction, and other physiological processes in organisms. However, the inherent complexity and uncontrollability of ion channels in nature restrict their direct use in technical applications. In order to address the application requirements of specific fields, nanochannels have been designed to simulate and optimize the functional characteristics of biological ion channels. Herein, two-dimensional (2D) nanochannels based on MXene/carbon nanotube (CNT) composite membrane are constructed, with their ion transport mechanisms analyzed using molecular dynamics simulations. In addition, the ion transport characteristics in nanochannels under the influence of external environment of pressure are further explored and the current density can reach up to 315 nA cm−2. Based on the ion selectivity of nanochannels in MXene/CNT composite membrane, a self-powered linear pressure sensor is designed, which shows an ultrafast response (51.3 ms) and recovery time (60.2 ms), respectively. Thus, the sensor is capable of monitoring a range of human activities ranging from subtle deformations to vigorous body movements. Furthermore, the sensor can readily differentiate a range of sounds through air vibration and exhibit enormous potential in sound visualization technology.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202411706-sup-0001-SuppMat.docx36.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Kim, H. Wang, Y. M. Lee, Angew. Chem. 2019, 131, 17674.
- 2K. Varoon Agrawal, X. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C.-Y. Sung, Science 2011, 334, 72.
- 3J. R. Werber, C. O. Osuji, M. Elimelech, Nat. Rev. Mater. 2016, 1, 16018.
- 4C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
- 5L. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei, J. Caro, H. Wang, Angew. Chem. 2020, 132, 8798.
- 6D. J. Late, B. Liu, H. R. Matte, C. Rao, V. P. Dravid, Adv. Funct. Mater. 2012, 22, 1894.
- 7Z. Zhang, P. Zhang, S. Yang, T. Zhang, M. Löffler, H. Shi, M. R. Lohe, X. Feng, PNAS Nexus 2020, 117, 13959.
- 8A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. Van Der Zant, N. Agraït, G. Rubio-Bollinger, Adv. Mater. 2012, 24, 772.
- 9A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
- 10Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356.
- 11Y. Chen, M. Gao, K. Chen, H. Sun, H. Xing, X. Liu, W. Liu, H. Guo, Small 2024, 20, 2400593.
- 12M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao, L. Li, B. Cai, W. Liu, Z. Wang, H. Guo, Adv. Sci. 2022, 9, 2200507.
- 13T. Feng, D. Ling, C. Li, W. Zheng, S. Zhang, C. Li, A. Emel'yanov, A. S. Pozdnyakov, L. Lu, Y. Mao, Nano Res. 2023, 17, 4462.
- 14R. Qin, M. Hu, X. Li, L. Yan, C. Wu, J. Liu, H. Gao, G. Shan, W. Huang, Nanoscale 2020, 12, 17715.
- 15P. Zhu, S. Mu, W. Huang, Z. Sun, Y. Lin, K. Chen, Z. Pan, M. G. Haghighi, R. Sedghi, J. Wang, Y. Mao, Nano Res. 2024, 17, 6550.
- 16A. Esfandiar, B. Radha, F. Wang, Q. Yang, S. Hu, S. Garaj, R. R. Nair, A. Geim, K. Gopinadhan, Science 2017, 358, 511.
- 17K. Zhou, Z. Xu, ACS Appl. Mater. Interfaces 2018, 10, 27801.
- 18A. R. Koltonow, J. Huang, Science 2016, 351, 1395.
- 19Z. Zhang, P. Bhauriyal, H. Sahabudeen, Z. Wang, X. Liu, M. Hambsch, S. C. Mannsfeld, R. Dong, T. Heine, X. Feng, Nat. Commun. 2022, 13, 3935.
- 20W. Xin, L. Jiang, L. Wen, Acc. Chem. Res. 2021, 54, 4154.
- 21J. Zhou, J. Hao, R. Wu, L. Su, J. Wang, M. Qiu, B. Bao, C. Ning, C. Teng, Y. Zhou, L. Jiang, Adv. Funct. Mater. 2022, 32, 2209767.
- 22X. Lin, P. Liu, W. Xin, Y. Teng, J. Chen, Y. Wu, Y. Zhao, X. Y. Kong, L. Jiang, L. Wen, Adv. Funct. Mater. 2021, 31, 2105013.
- 23C. Li, P. Liu, Y. Zhi, Y. Zhai, Z. Liu, L. Gao, L. Jiang, J. Am. Chem. Soc. 2023, 145, 19098.
- 24J. Shen, G. Liu, Y. Han, W. Jin, Nat. Rev. Mater. 2021, 6, 294.
- 25D. Han, W. He, R. Guo, H. Li, Y. Yang, K.-G. Zhou, J. Electrochem. Soc. 2024, 171, 047518.
- 26J. Lao, K. Zhou, S. Pan, J. Luo, J. Gao, A. Dong, L. Jiang, ACS Nano 2022, 16, 9142.
- 27J. Lao, R. Lv, J. Gao, A. Wang, J. Wu, J. Luo, ACS Nano 2018, 12, 12464.
- 28J.-J. Shao, K. Raidongia, A. R. Koltonow, J. Huang, Nat. Commun. 2015, 6, 7602.
- 29R. Joshi, P. Carbone, F.-C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. Wu, A. K. Geim, R. R. Nair, Science 2014, 343, 752.
- 30F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Nano Lett. 2007, 7, 1022.
- 31A. Szymczyk, H. Zhu, B. Balannec, Langmuir 2010, 26, 1214.
- 32Q. Zhang, D. Lei, J. Shi, Z. Ren, J. Yin, P. Jia, W. Lu, Y. Gao, N. Liu, Adv. Mater. 2023, 35, 2308795.
- 33B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin, G. Wang, X. Li, W. Liu, J. Liu, Z. Zeng, ACS Nano 2022, 16, 19293.
- 34J. Liu, W. Lu, X. Lu, L. Zhang, H. Dong, Y. Li, Nano Res. 2022, 15, 2558.
- 35R. Qin, G. Shan, M. Hu, W. Huang, Mater. Today Phys. 2021, 21, 100527.
- 36X. Tong, S. Liu, Y. Zhao, L. Huang, J. Crittenden, Y. Chen, Environ. Sci. Technol. 2022, 56, 8964.
- 37R. Xu, J. Zhang, Y. Kang, H. Yu, W. Zhang, M. Hua, B. Pan, X. Zhang, Environ. Sci. Technol. 2024, 58, 6835.
- 38S. N. Kanakaraj, Y.-Y. Hsieh, P. K. Adusei, B. Homan, Y. Fang, G. Zhang, S. Mishra, S. Gbordzoe, V. Shanov, Carbon 2019, 149, 407.
- 39X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang, D. Wang, D. Wang, J. Li, D. Li, V. Shulga, G. Shen, W. Han, Adv. Funct. Mater. 2021, 31, 2010533.
- 40D. Stein, M. Kruithof, C. Dekker, Phys. Rev. Lett. 2004, 93, 035901.
- 41S. Zhou, Y. Hu, W. Xin, L. Fu, X. Lin, L. Yang, S. Hou, X. Y. Kong, L. Jiang, L. Wen, Adv. Mater. 2023, 35, 2208640.
- 42Y. Guo, X. Sun, S. Ding, J. Lu, H. Wang, Y. Zhu, L. Jiang, ACS Nano 2024, 18, 7161.
- 43A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, L. Bocquet, Nature 2013, 494, 455.