Facile and Ultrafast Microfluidic Photothermal PCR for Autonomous and Quantitative Point-of-Care Pathogen Detection
Yaowei Zou
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorMingxu Liu
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorZixi Gao
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorYaohua Xue
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorJieyu Qiu
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorHuizhen Zhang
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorXinying Li
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorCorresponding Author
Chunsun Zhang
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bowen Shu
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYaowei Zou
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorMingxu Liu
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorZixi Gao
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorYaohua Xue
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorJieyu Qiu
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorHuizhen Zhang
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorXinying Li
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
Search for more papers by this authorCorresponding Author
Chunsun Zhang
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bowen Shu
Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Point-of-care (POC) pathogen detection is highly desirable in diverse fields such as infectious disease diagnosis, food safety testing, and environmental monitoring. Herein, the study seeks to address this critical need by developing an automated microfluidic photothermal quantitative polymerase chain reaction (AMP-qPCR) system in a greatly simplified format. A key element of AMP-qPCR is an architecture that combines the design of a clockwork-like, magnetically-driven multi-chamber cartridge with the use of a cheap black tape beneath the PCR chamber as a fast photothermal-responsive engine. This not only enables the unprocessed sample to be lysed, purified, and subjected to real-time fluorescence PCR in an ultracompact and autonomous manner but also eliminates the need for sophisticated photonic material/device fabrication that is frequently required for performing ultrafast photothermal PCR. It is shown that AMP-qPCR can accomplish high-efficient bacterial DNA extraction and quantitative PCR within 18.5 min, enabling accurate quantification of bacteria concentration from 108 to 102 CFU·mL−1. Furthermore, its practical applicability is demonstrated in detecting Neisseria gonorrhoeae from sexually transmitted infection-suspected patients by using clinical urine and cervical swab specimens, exhibiting matched performance to the benchtop automated machine. The presented platform enhances the availability of POC molecular diagnostics for on-site and in-home testing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202411417-sup-0001-SuppMat.docx4.9 MB | Supporting Information |
smll202411417-sup-0002-VideoS1.mp424.6 MB | Supplemental Video 1 |
smll202411417-sup-0003-VideoS2.mp415.5 MB | Supplemental Video 2 |
smll202411417-sup-0004-VideoS3.mp416.4 MB | Supplemental Video 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. Xu, A. Xia, D. Wang, Y. Zhang, S. Deng, W. Lu, J. Luo, Q. Zhong, F. Zhang, L. Zhou, W. Zhang, Y. Wang, C. Yang, K. Chang, W. Fu, J. Cui, M. Gan, D. Luo, M. Chen, Sci. Adv. 2020, 6, eaaz7445; b) T. Nguyen, V. A. Chidambara, S. Z. Andreasen, M. Golabi, V. N. Huynh, Q. T. Linh, D. D. Bang, A. Wolff, Trac-Trend. Anal. Chem. 2020, 131, 116004; c) H. Wang, Y. Wang, W. Wang, Y. Zhang, Q. Yuan, J. Tan, Accounts of Mater. Res. 2023, 4, 1083; d) X. Liao, Y. Zhang, Q. Zhang, J. Zhou, T. Ding, J. Feng, Trends Food Sci. Tech 2023, 135, 115; e) V. Narasimhan, H. Kim, S. H. Lee, H. Kang, R. H. Siddique, H. Park, Y. M. Wang, H. Choo, Y. Kim, S. Kumar, Adv. Mate. Technol-US 2023, 8, 2300230.
- 2a) R. W. Peeling, P. L. Olliaro, D. I. Boeras, N. Fongwen, Lancet Infect. Dis. 2021, 21, e290; b) I. Torres, S. Poujois, E. Albert, J. Colomina, D. Navarro, Clin. Microbiol. Infec. 2021, 27, 1672.
- 3a) T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Nucleic Acids Res. 2000, 28, e63; b) O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, PLoS Biol. 2006, 4, e204.
- 4a) Z. Wang, B. Yan, Y. Ni, Y. Cao, J. Qiu, R. He, Y. Dong, M. Hao, W. Wang, C. Wang, H. Su, B. Yi, L. Chang, Biosens. Bioelectron. 2024, 247, 115917; b) Z. Wang, M. Liu, H. Lin, G. Zhu, Z. Dong, N. Wu, Y. Fan, G. Xu, L. Chang, Y. Wang, ACS Nano 2024, 18, 2872.
- 5a) H. J. van der Veer, E. A. van Aalen, C. M. S. Michielsen, E. T. L. Hanckmann, J. Deckers, M. M. G. J. van Borren, J. Flipse, A. J. M. Loonen, J. P. H. Schoeber, M. Merkx, ACS Central Sci. 2023, 9, 657; b) Z. Weng, Z. You, J. Yang, N. Mohammad, M. Lin, Q. Wei, X. Gao, Y. Zhang, Angew. Chem., Int. Ed. 2023, 62, 202214987.
- 6a) J. S. Gootenberg, O. O. Abudayyeh, J. W. Lee, P. Essletzbichler, A. J. Dy, J. Joung, V. Verdine, N. Donghia, N. M. Daringer, C. A. Freije, C. Myhrvold, R. P. Bhattacharyya, J. Livny, A. Regev, E. V. Koonin, D. T. Hung, P. C. Sabeti, J. J. Collins, F. Zhang, Science 2017, 356, 438; b) S. Y. Li, Q. X. Cheng, J. M. Wang, X. Y. Li, Z. L. Zhang, S. Gao, R. B. Cao, G. P. Zhao, J. Wang, Cell Discov. 2018, 4, 20; c) J. S. Chen, E. Ma, L. B. Harrington, M. D. Costa, X. Tian, J. M. Palefsky, J. A. Doudna, Science 2018, 360, 436; d) C. Y. Lee, H. Kim, I. Degani, H. Lee, A. Sandoval, Y. Nam, M. Pascavis, H. G. Park, T. Randall, A. Ly, C. M. Castro, H. Lee, Nat. Commun. 2024, 15, 6271; e) Y. Wang, H. Chen, K. Lin, Y. Han, Z. Gu, H. Wei, K. Mu, D. Wang, L. Liu, R. Jin, R. Song, Z. Rong, S. Wang, Nat. Commun. 2024, 15, 3279.
- 7M. J. Kellner, J. G. Koob, J. S. Gootenberg, O. O. Abudayyeh, F. Zhang, Nat. Protoc. 2019, 14, 2986.
- 8a) H. Wu, X. Cao, Y. Meng, D. Richards, J. Wu, Z. Ye, A. J. deMello, Biosens. Bioelectron. 2022, 211, 114377; b) J. Q. Cui, F. X. Liu, H. Park, K. W. Chan, T. Leung, B. Z. Tang, S. Yao, Biosens. Bioelectron. 2022, 202, 114019; c) W. Yin, J. Zhuang, J. Li, L. Xia, K. Hu, J. Yin, Y. Mu, Small 2023, 19, 2303398.
- 9a) P. Neuzil, C. Zhang, J. Pipper, S. Oh, L. Zhuo, Nucleic Acids Res. 2006, 34, e77; b) J. Pipper, M. Inoue, L. F. P. Ng, P. Neuzil, Y. Zhang, L. Novak, Nat. Med. 2007, 13, 1259; c) J. Pipper, Y. Zhang, P. Neuzil, T. M. Hsieh, Angew. Chem., Int. Ed. 2008, 47, 3900.
- 10a) M. U. Kopp, A. J. d. Mello, A. Manz, Science 1998, 280, 1046; b) M. B. Kulkarni, S. Goel, Eng. Res. Express 2020, 2, 042001; c) B. Shu, C. Zhang, D. Xing, Lab Chip 2015, 15, 2597; d) L. Wan, M. Li, M. K. Law, P. I. Mak, R. P. Martins, Y. Jia, Biosens. Bioelectron. 2023, 242, 115711.
- 11a) M. You, Z. Li, S. Feng, B. Gao, C. Yao, J. Hu, F. Xu, Trends Biotechnol. 2020, 38, 637; b) X. Cui, Q. Ruan, X. Zhuo, X. Xia, J. Hu, R. Fu, Y. Li, J. Wang, H. Xu, Chem. Rev. 2023, 123, 6891; c) K. Shrestha, S. Kim, G. Cho, Mater. Today Adv. 2023, 20, 100420.
- 12a) P. J. R. Roche, L. K. Beitel, R. Khan, R. Lumbroso, M. Najih, M. C. K. Cheung, J. Thiemann, V. Veerasubramanian, M. Trifiro, V. P. Chodavarapu, A. G. Kirk, Analyst 2012, 137, 4475; b) J. H. Lee, Z. Cheglakov, J. Yi, T. M. Cronin, K. J. Gibson, B. Tian, Y. Weizmann, J. Am. Chem. Soc. 2017, 139, 8054; c) L. Zhang, P. Rokshana, Y. Yu, Y. Zhao, F. Ye, Small 2022, 18, 2107858; d) N. R. Blumenfeld, M. A. E. Bolene, M. Jaspan, A. G. Ayers, S. Zarrandikoetxea, J. Freudman, N. Shah, A. M. Tolwani, Y. Hu, T. L. Chern, J. Rogot, V. Behnam, A. Sekhar, X. Liu, B. Onalir, R. Kasumi, A. Sanogo, K. Human, K. Murakami, G. S. Totapally, M. Fasciano, S. K. Sia, Nat. Nanotechnol. 2022, 17, 984; e) L. Zhang, W. Li, R. Parvin, X. Wang, Q. Fan, F. Ye, Adv. Funct. Mater. 2022, 32, 2207879; f) L. Zhu, J. Zhao, Y. Fang, Z. Guo, M. Wang, N. He, Nano Today 2023, 53, 102029; g) R. Parvin, L. Zhang, Y. Zu, F. Ye, Small 2023, 19, 2207672.
- 13a) J. H. Son, B. Cho, S. Hong, S. H. Lee, O. Hoxha, A. J. Haack, L. P. Lee, Light: Sci. Appl. 2015, 4, e280; b) B. Cho, S. H. Lee, J. Song, S. Bhattacharjee, J. Feng, S. Hong, M. Song, W. Kim, J. Lee, D. Bang, B. Wang, L. W. Riley, L. P. Lee, ACS Nano 2019, 13, 13866; c) B. H. Kang, Y. Lee, E. S. Yu, H. Na, M. Kang, H. J. Huh, K. H. Jeong, ACS Nano 2021, 15, 10194; d) B. H. Kang, K. W. Jang, E. S. Yu, H. Na, Y.-J. Lee, W. Y. Ko, N. Bae, D. Rho, K. H. Jeong, ACS Nano 2023, 17, 6507; e) K. Shrestha, S. Kim, J. Han, G. M. Florez, H. Truong, T. Hoang, S. Parajuli, T. AM, B. Kim, Y. Jung, A. T. Abafogi, Y. Lee, S. H. Song, J. Lee, S. Park, M. Kang, H. J. Huh, G. Cho, L. P. Lee, Adv. Sci. 2023, 10, 2302072; f) S. E. Seo, K. H. Kim, H. Oh, J. Kim, S. Kim, Y. K. Kim, J. J. Hong, K.-C. Ko, H. Cho, D.-Y. Lee, H.-i. Kim, K. G. Lee, O. S. Kwon, Adv. Funct. Mater. 2024, 34, 2402972.
- 14a) B. Shu, Z. Li, X. Yang, F. Xiao, D. Lin, X. Lei, B. Xu, D. Liu, Chem. Commun. 2018, 54, 2232; b) B. Shu, L. Lin, B. Wu, E. Huang, Y. Wang, Z. Li, H. He, X. Lei, B. Xu, D. Liu, Biosens. Bioelectron. 2021, 181, 113145.
- 15a) H. de Puig, R. A. Lee, D. Najjar, X. Tan, L. R. Soenksen, N. M. Angenent-Mari, N. M. Donghia, N. E. Weckman, A. Ory, C. F. Ng, P. Q. Nguyen, A. S. Mao, T. C. Ferrante, G. Lansberry, H. Sallum, J. Niemi, J. J. Collins, Sci. Adv. 2021, 7, eabh2944; b) G. Adedokun, M. Alipanah, Z. H. Fan, Lab Chip 2024, 24, 3626.
- 16a) M. L. Y. Sin, K. E. Mach, P. K. Wong, J. C. Liao, Expert Rev. Mol. Diagn. 2014, 14, 225; b) O. Mosley, L. Melling, M. D. Tarn, C. Kemp, M. M. N. Esfahani, N. Pamme, K. J. Shaw, Lab Chip 2016, 16, 2108.