Hollow Mn/Co-MOF as a Powerful Oxidase-Like Nanozyme for Detection of Total Antioxidant Capacity and Black Tea Fermentation Degree
Ting Liang
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
Search for more papers by this authorYali Huang
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
Search for more papers by this authorLeiwenxuan Yang
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Search for more papers by this authorYunfeng Chai
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008 China
Search for more papers by this authorZhenxia Hao
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008 China
Search for more papers by this authorCorresponding Author
Hongping Chen
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guicen Ma
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorTing Liang
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
Search for more papers by this authorYali Huang
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
Search for more papers by this authorLeiwenxuan Yang
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Search for more papers by this authorYunfeng Chai
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008 China
Search for more papers by this authorZhenxia Hao
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008 China
Search for more papers by this authorCorresponding Author
Hongping Chen
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guicen Ma
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The detection of total antioxidant capacity (TAC) in teas and its vital indicator for monitoring the fermentation degree during black tea processing are of great significance for intelligent manufacturing of the tea industry. Here, highly dispersed manganese species on Co-MOF with hollow structures (HS-Mn/Co-MOF) nanozyme with superior oxidase-like activity is constructed for colorimetric detection of ascorbic acid (AA) and TAC. Owing to the Mn doping and unique hollow structures, the HS-Mn/Co-MOF nanozyme possesses more surface active oxygen species, negative surface charges and rapid mass transport, thus resulting in 20-times higher catalytic activity and 30-times higher reaction rate than that of pure Co-MOF. Thanks to the remarkable oxidase-like catalytic activity, the HS-Mn/Co-MOF nanozyme-based colorimetric sensor exhibits a wide linear range of 0.01–120 µm, along with a low detection limit of 3 nm for AA detection. Additionally, the determination of TAC levels in real tea samples is further achieved and different tea types can be effectively distinguished by utilizing HS-Mn/Co-MOF nanozyme. Identification and prediction of the fermentation quality during the black tea fermentation process using nanozyme combined with machine learning are realized for the first time.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202411275-sup-0001-SuppMat.docx1 MB | Supporting Information |
smll202411275-sup-0002-VideoS1.mp42 MB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Zhang, C. T. Ho, J. Zhou, J. S. Santos, L. Armstrong, D. Granato, Rev. Food Sci. Food Saf. 2019, 18, 1474,.
- 2H. Dong, Y. Li, X. Lai, M. Hao, L. Sun, Q. Li, R. Chen, Q. Li, S. Sun, B. Wang, Z. Zhang, X. Liu, Food Chem. 2024, 444, 138680,.
- 3C. Yang, L. Jiao, C. Dong, X. Wen, P. Lin, D. Duan, G. Li, C. Zhao, X. Fu, D. Dong, Food Chem. 2024, 449, 139211.
- 4T. An, W. Huang, X. Tian, S. Fan, D. Duan, C. Dong, C. Zhao, G. Li, Sens. Actuators B Chem 2022, 366, 131994.
- 5X. Luo, M. Gouda, A. B. Perumal, Z. Huang, L. Lin, Y. Tang, A. Sanaeifar, Y. He, X. Li, C. Dong, Sens. Actuators B Chem 2022, 373, 132680.
- 6H. Xia, W. Chen, D. Hu, A. Miao, X. Qiao, G. Qiu, J. Liang, W. Guo, C. Ma, Food Chem. 2024, 440, 138242.
- 7J. V. Higdon, B. Frei, Crit. Rev. Food Sci. Nutr. 2003, 43, 89.
- 8U. W. Stodt, N. Blauth, S. Niemann, J. Stark, V. Pawar, S. Jayaraman, J. Koek, U. H. Engelhardt, J. Agric. Food Chem. 2014, 62, 7854.
- 9D. Liu, J. Yang, S. Wen, M. Mu, W. Ji, B. Zhao, Y. Ozaki, W. Song, Sens. Actuators B Chem 2024, 418, 136251.
- 10J. Razlivina, N. Serov, O. Shapovalova, V. Vinogradov, Small 2022, 18, 2105673.
- 11X. Wang, G. Wei, W. Liu, Y. Zhang, C. Zhu, Q. Sun, M. Zhang, H. Wei, Anal. Chem. 2023, 95, 5937.
- 12Y. Zhang, C. Zhang, W. Qian, F. Lei, Z. Chen, X. Wu, Y. Lin, F. Wang, Biosens. Bioelectron. 2024, 263, 116593.
- 13Y. Chen, A. G. Liu, Z. T. Chen, X. H. Liang, J. T. Yan, B. Li, ACS Catal. 2024, 14, 16605.
- 14M. Chen, Z. Liu, Y. Guan, Y. Chen, W. Liu, Y. Liu, Sensors Actuators B Chem 2022, 359, 131609.
- 15Y. Guan, Y. Lu, J. Zhao, W. Huang, Y. Liu, Chem. Eng. J. 2023, 465, 142703.
- 16J. L. Wang, T. Q. Chai, L. X. Chen, G. Y. Chen, H. Chen, F. Q. Yang, Microchem. J. 2024, 199, 110207.
- 17Y. Gao, X. Gao, H. Hou, Z. Qu, H. Li, B. Du, P. Tang, Sensors Actuators B Chem 2024, 404, 135280.
- 18D. Deng, Y. Wang, S. Wen, Y. Kang, X. Cui, R. Tang, X. Yang, Anal. Chim. Acta. 2023, 1279, 341797.
- 19D. Nie, X. Zhu, M. Liu, M. Cheng, K. Fan, Z. Zhao, Q. Huang, X. Zhang, Z. Han, J. Hazard. Mater. 2024, 477, 135366.
- 20S. Wang, Z. Wei, Q. Xu, L. Yu, Y. Xiao, ACS Nano 2024, 18, 1084.
- 21Y. Lv, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, L. Zheng, ACS Appl. Mater. Interfaces. 2015, 7, 13604.
- 22S. Li, Y. Hou, Q. Chen, X. Zhang, H. Cao, Y. Huang, ACS Appl. Mater. Interfaces. 2020, 12, 2581.
- 23M. Zhao, J. Deng, J. Liu, Y. Li, J. Liu, Z. Duan, J. Xiong, Z. Zhao, Y. Wei, W. Song, Y. Sun, ACS Catal. 2019, 9, 7548.
- 24Y. Chen, Q. Tian, H. Wang, R. Ma, R. Han, Y. Wang, H. Ge, Y. Ren, R. Yang, H. Yang, Y. Chen, X. Duan, L. Zhang, J. Gao, L. Gao, X. Yan, Y. Qin, Adv. Mater. 2024, 36, 2206421.
- 25L. Xing, J. Liu, T. Qi, L. Wang, Z. Wang, S. Zhang, Appl. Catal. B-environ. 2020, 275, 119143.
- 26X. Han, L. Liu, H. Gong, L. Luo, Y. Han, J. Fan, C. Xu, T. Yue, J. Wang, W. Zhang, Food Chem. 2022, 371, 131115.
- 27S. Ding, Z. Lyu, E. Sarnello, M. Xu, L. Fang, H. Tian, S. E. Karcher, T. Li, X. Pan, J. McCloy, G. Ding, Q. Zhang, Q. Shi, D. Du, J.-C. Li, X. Zhang, Y. Lin, J. Mater. Chem. A. 2022, 10, 5981.
- 28S. Ji, P. Li, X. Zhao, S. Wei, X. Cheng, L. Wu, Y. Ye, K. Ma, Y. Cai, C. Liang, Sensors Actuators B Chem 2023, 383, 133595.
- 29H. Xu, X. Chen, J. Lin, Y. Zheng, Y. Xiao, Y. Zheng, Energy Fuels 2022, 36, 13168.
- 30L. Song, H. Zhang, J. Xiong, Z. Chen, Y. Liu, H. Zhou, W. Yang, D. Cao, H. Huang, L. Chen, M. Fu, D. Ye, Appl Catal B-environ. 2024, 343, 123547.
- 31S. Lu, K. Li, F. Huang, C. Chen, B. Sun, Appl. Surf. Sci. 2017, 400, 277.
- 32Z. Li, F. Liu, C. Chen, Y. Jiang, P. Ni, N. Song, Y. Hu, S. Xi, M. Liang, Y. Lu, Nano Lett. 2023, 23, 1505.
- 33Z. Ding, Z. Li, X. Zhao, Y. Miao, Z. Yuan, Y. Jiang, Y. Lu, J. Colloid Interface Sci. 2023, 631, 86.
- 34J. Hou, J. Wang, J. Han, J. Wang, D. Chao, Q. Dong, D. Fan, S. Dong, Biosens. Bioelectron. 2024, 249, 116035.
- 35D. Pedone, M. Moglianetti, M. Lettieri, G. Marrazza, P. P. Pompa, Anal. Chem. 2020, 92, 8660.
- 36X. Kang, G. Cao, J. Wang, J. Wang, X. Zhu, M. Fu, D. Yu, L. Hua, F. Gao, Biosens. Bioelectron. 2024, 246, 115880.
- 37N. Cheng, J.-C. Li, D. Liu, Y. Lin, D. Du, Small 2019, 15, 1901485.
- 38H. Ni, X. Li, G. Yan, C. Huang, H. Zou, Sensors Actuators B Chem 2024, 398, 134794.
- 39C. Y. Zhang, T. Q. Chai, G. Y. Chen, W. Y. Zhang, H. Zhang, F. Q. Yang, Microchem. J. 2022, 173, 106992.
- 40R. Wu, M. Sun, X. Liu, F. Qin, X. Zhang, Z. Qian, J. Huang, Y. Li, T. Tan, W. Chen, Z. Chen, Anal. Chem. 2022, 94, 14308.
- 41S. S. Mohammed Ameen, K. M. Omer, Food Chem. 2024, 448, 139170.
- 42H. Wu, J. Chen, P. Lin, Y. Su, H. Li, W. Xiao, J. Peng. ACS Appl. Mater. Interfaces. 2024, 16, 39857.
- 43Y. Wu, W. Li, Y. Xu, E. Jin, Y. Tu, J. Zhejiang Univ. Sci. B. 2011, 12, 744.