Oxygen-Doped γ-Mo2N as High-Performance Catalyst for Ammonia Decomposition
Yi Shi
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Xiao Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lingling Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiang Chu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorLi Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorBaokang Geng
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorRuize Jiang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorShibo Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Shuyan Song
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHongjie Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYi Shi
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Xiao Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lingling Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiang Chu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorLi Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorBaokang Geng
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorRuize Jiang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorShibo Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Shuyan Song
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
China-Belarus Belt and Road joint laboratory on Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHongjie Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorAbstract
γ-Mo2N catalysts exhibit excellent activity and stability in ammonia decomposition reactions. However, the influence of oxygen on its activity is still unknown. In this work, two γ-Mo2N catalysts with different oxygen content are synthesized using temperature-programmed nitridation of α-MoO3. The γ-Mo2N catalysts are highly oxidized and their ammonia decomposition performance is closely related to their oxygen content. The activity of γ-Mo2N with high oxygen content (HO-γ-Mo2N) is much higher, whose H2 formation rate at 550 °C is 3.3 times higher than the γ-Mo2N with low oxygen content (LO-γ-Mo2N). This is mainly attributed to two aspects: on the one hand, the higher valence state of Mo in the HO-γ-Mo2N leads to stronger Mo─NH3 bonds, which promotes the adsorption and activation of NH3. On the other hand, the H generated by N─H bond breaking is more easily migrated to O, which avoids excessive H occupying the γ-Mo2N active sites and alleviates the negative effect of hydrogen poisoning.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410803-sup-0001-SuppMat.docx3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. A. Le, Y. Kim, S. J. Han, Q. C. Do, G. J. Kim, Y. Im, H.-J. Chae, Chem. Eng. J. 2024, 493, 152503.
- 2L. L. Jiang, X. Z. Fu, Engineering 2021, 7, 1688.
- 3K. H. Chu, J. Lim, J. S. Mang, M.-H. Hwang, Int. J. Hydrogen Energy 2022, 47, 1409.
- 4M. Wappler, D. Unguder, X. Lu, H. Ohlmeyer, H. Teschke, W. Lueke, Int. J. Hydrogen Energy 2022, 47, 33551.
- 5K. C. Leung, S. Hong, G. C. Li, Y. D. Xing, B. K. Y. Ng, P.-L. Ho, D. P. Ye, P. Zhao, E. Tan, O. Safonova, T.-S. Wu, M. M.-J. Li, G. Mpourmpakis, S. C. E. Tsang, J. Am. Chem. Soc. 2023, 145, 14548.
- 6M. Pinzón, A. Romero, A. D. L. Consuegra, A. R. D. L. Osa, P. Sánchez, J. Ind. Eng. Chem. 2021, 94, 326.
- 7X. T. Wu, X. Wang, L. L. Zhang, X. M. Wang, S. Y. Song, H. J. Zhang, Angew. Chem., Int. Ed. 2024, 63, e202317594.
- 8T. E. Bell, L. Torrente-Murciano, Top. Catal. 2016, 59, 1438.
- 9S. Mukherjee, S. V. Devaguptapu, A. Sviripa, C. R. F. Lund, G. Wu, Appl. Catal. B-Environ. 2018, 226, 162.
- 10I. Lucentini, X. Garcia, X. Vendrell, J. Llorca, Ind. Eng. Chem. Res. 2021, 60, 18560.
- 11K. E. Lamb, M. D. Dolan, D. F. Kennedy, Int. J. Hydrogen Energy 2019, 44, 3580.
- 12K. Ogasawara, M. Miyazaki, K. Miyashita, H. Abe, Y. Niwa, M. Sasase, M. Kitano, H. Hosono, Adv. Energy Mater. 2023, 13, 2301286.
- 13B. S. Teng, C. H. Ma, J. Y. Chen, Y. L. Zhang, B. H. Wei, M. H. Sang, H. Wang, Y. H. Sun, ACS Appl. Nano Mater. 2024, 7, 15012.
- 14Z. K. Su, J. Y. Guan, Y. Z. Liu, D. X. Shi, Q. Wu, K. C. Chen, Y. Y. Zhang, H. S. Li, Int. J. Hydrogen Energy 2024, 51, 1019.
- 15S. Kang, J. Cha, Y. S. Jo, Y.-J. Lee, H. Sohn, Y. Kim, C. K. Song, Y. Kim, D.-H. Lim, J. Park, C. W. Yoon, Adv. Mater. 2023, 35, 2203364.
- 16H. H. Fang, S. Wu, T. Ayvali, J. W. Zheng, J. Fellowes, P.-L. Ho, K. C. Leung, A. Large, G. Held, R. Kato, K. Suenaga, Y. I. A. Reyes, H. V. Thang, H.-Y. T. Chen, S. C. E. Tsang, Nat. Commun. 2023, 14, 647.
- 17N. Zhu, F. Yang, Y. Hong, J. J. Liang, Int. J. Hydrogen Energy 2025, 98, 1243.
- 18W. J. Yan, B. L. Liang, G. Y. Bi, H. Y. Zhuo, W. J. Wang, H. M. Duan, G. L. Xu, F. A. Wang, Y. Su, T. Y. Zhang, X. F. Yang, Y. Q. Huang, ACS Sustainable Chem. Eng. 2024, 12, 15024.
- 19A. M. Karim, V. Prasad, G. Mpourmpakis, W. W. Lonergan, A. I. Frenkel, J. G. Chen, D. G. Vlachos, J. Am. Chem. Soc. 2009, 131, 12230.
- 20H. D. Tang, Y. Wang, W. J. Zhang, Z. J. Liu, L. C. Li, W. F. Han, Y. Li, J. Solid State Chem. 2021, 295, 121946.
- 21Z. H. Wang, X. Tang, M. L. Wang, Y. Xu, X. T. Qin, L. H. Zhou, M. Peng, S. Dai, D. Ma, Chem Catal. 2024, 4, 101000.
- 22X.-Y. Guo, J.-H. Wang, Q. Zhang, T.-Z. Li, H. Dong, C.-J. Jia, C. Li, Y.-W. Zhang, Appl. Catal. B-Environ. 2024, 348, 123844.
- 23B. M. Wyvratt, J. R. Gaudet, D. B. Pardue, A. Marton, S. Rudić, E. A. Mader, T. R. Cundari, J. M. Mayer, L. T. Thompson, ACS Catal. 2016, 6, 5797.
- 24H.-X. Liu, J.-Y. Li, X. T. Qin, C. Ma, W.-W. Wang, K. Xu, H. Yan, D. Q. Xiao, C.-J. Jia, Q. Fu, D. Ma, Nat. Commun. 2022, 13, 5800.
- 25A. Lilić, L. Cardenas, A. Mesbah, E. Bonjour, P. Jame, C. Michel, S. Loridant, N. Perret, J. Alloys Compd. 2022, 924, 166576.
- 26C. Kura, Y. Kunisada, E. Tsuji, C. Y. Zhu, H. Habazaki, S. Nagata, M. P. Müller, R. A. D. Souza, Y. Aoki, Nat. Energy 2017, 2, 786.
- 27Z. M. Cui, C. X. Zu, W. D. Zhou, A. Manthiram, J. B. Goodenough, Adv. Mater. 2016, 28, 6926.
- 28M. E. Kreider, M. B. Stevens, Y. Z. Liu, A. M. Patel, M. J. Statt, B. M. Gibbons, A. Gallo, M. Ben-Naim, A. Mehta, R. C. Davis, A. V. Ievlev, J. K. Nørskov, R. Sinclair, L. A. King, T. F. Jaramillo, Chem. Mater. 2020, 32, 2946.
- 29X. Y. Song, W. C. Yi, J. F. Li, Q. H. Kong, H. Bai, G. C. Xi, Nano Lett. 2021, 21, 4410.
- 30X. L. Tian, J. M. Luo, H. X. Nan, H. B. Zou, R. Chen, T. Shu, X. H. Li, Y. W. Li, H. Y. Song, S. J. Liao, R. R. Adzic, J. Am. Chem. Soc. 2016, 138, 1575.
- 31V. R. B. Gurram, S. S. Enumula, R. R. Chada, K. S. Koppadi, D. R. Burri, S. R. R. Kamaraju, Catal. Surv. Asia 2018, 22, 166.
- 32J. C. Schlatter, S. T. Oyama, J. E. Metcalfe III, J. M. Lambert Jr., Ind. Eng. Chem. Res. 1988, 27, 1648.
- 33Y.-J. Zhang, Q. Xin, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Appl. Catal. A-Gen. 1999, 180, 237.
- 34W. Q. Zheng, T. P. Cotter, P. Kaghazchi, T. Jacob, B. Frank, K. Schlichte, W. Zhang, D. S. Su, F. Schüth, R. Schlögl, J. Am. Chem. Soc. 2013, 135, 3458.
- 35S. T. Oyama, J. Catal. 1992, 133, 358.
- 36X. F. Wei, J. X. Su, G. B. Xie, M. L. Lian, H. Y. Huang, C. Q. Chen, Y. Luo, D. L. Li, L. L. Jiang, Mol. Catal. 2024, 562, 114201.
- 37L. L. Huo, X. Han, L. Y. Zhang, B. C. Liu, R. Gao, B. Cao, W.-W. Wang, C.-J. Jia, K. Q. Liu, J. H. Liu, J. Zhang, Appl. Catal. B-Environ. 2021, 294, 120254.
- 38X. X. Yu, K. Hu, H. Z. Zhang, G. He, Y. H. Xia, M. Deng, Y. Shi, C. Yang, X. C. Mao, Z. J. Wang, Plasma Chem. Plasma Process. 2023, 43, 183.
- 39S. Podila, S. F. Zaman, H. Driss, A. A. Al-Zahrani, M. A. Daous, L. A. Petrov, Int. J. Hydrogen Energy 2017, 42, 8006.
- 40Z. J. Wang, H. Z. Zhang, Z. B. Ye, G. He, C. Liao, J. Y. Deng, G. J. Lei, G. Y. Zheng, K. Zhang, F. J. Gou, X. C. Mao, Int. J. Hydrogen Energy 2024, 49, 1375.
- 41J. Xu, H. Yan, Z. Jin, C.-J. Jia, Chin. J. Chem. 2019, 37, 364.
- 42V. Tagliazucca, M. Leonib, C. Weidenthaler, Phys. Chem. Chem. Phys. 2014, 16, 6182.
- 43A. Srifa, K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Catal. Sci. Technol. 2016, 6, 7495.
- 44S.-H. Baek, K. Yun, D.-C. Kang, H. An, M. B. Park, C.-H. Shin, H.-K. Min, Catalysts 2021, 11, 192.
- 45H. S. Bamufleh, S. F. Zaman, Processes 2023, 11, 2287.
- 46A. Srifa, K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Appl. Catal. B-Environ. 2017, 218, 1.
- 47D. V. Leybo, A. N. Baiguzhina, D. S. Muratov, D. I. Arkhipov, E. A. Kolesnikov, V. V. Levina, N. I. Kosova, D. V. Kuznetsov, Int. J. Hydrogen Energy 2016, 41, 3854.
- 48S. R. Kulkarni, N. Realpe, A. Yerrayya, V. K. Velisoju, S. Sayas, N. Morlanes, J. Cerillo, S. P. Katikaneni, S. N. Paglieri, B. Solami, J. Gascon, P. Castaño, Catal. Sci. Technol. 2023, 13, 2026.
- 49I. Lucentini, G. G. Colli, C. D. Luzi, I. Serrano, O. M. Martínez, J. Llorca, Appl. Catal. B-Environ. 2021, 286, 119896.
- 50Z.-S. Zhang, Q. Fu, K. Xu, W.-W. Wang, X.-P. Fu, X.-S. Zheng, K. Wu, C. Ma, R. Si, C.-J. Jia, L.-D. Sun, C.-H. Yan, J. Am. Chem. Soc. 2020, 142, 13362.
- 51K. Xu, J.-C. Liu, W.-W. Wang, L.-L. Zhou, C. Ma, X. Z. Guan, F. R. Wang, J. Li, C.-J. Jia, C.-H. Yan, Nat. Commun. 2024, 15, 5751.