The Molecular Additive N-Acetyl-L-Phenylalanine Delays the Crystallization and Suppresses the Phase Impurity for Achieving Triple-Cation Perovskite Solar Cells with Efficiency Over 25%
Yang Ding
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorSiyuan Lu
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorJianhui Chang
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorErming Feng
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorHengyue Li
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCaoyu Long
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorYingguo Yang
School of Microelectronics Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorChenyi Yi
State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorZijian Zheng
Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong, 100872 P. R. China
Search for more papers by this authorLiming Ding
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Junliang Yang
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]
Search for more papers by this authorYang Ding
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorSiyuan Lu
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorJianhui Chang
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorErming Feng
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorHengyue Li
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCaoyu Long
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorYingguo Yang
School of Microelectronics Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorChenyi Yi
State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorZijian Zheng
Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong, 100872 P. R. China
Search for more papers by this authorLiming Ding
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Junliang Yang
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083 P. R. China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083 P. R. China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The crystallization process plays an important role in the formation of high-quality perovskite film for achieving efficient perovskite solar cells (PSCs), especially in the formation of mixed-cation perovskite film, as there are normally more phase impurities than in pure CH(NH2)2PbI3 (FAPbI3) film. Herein, a molecular additive strategy, i.e., introducing non-planar molecule N-acetyl-L-phenylalanine (APO) into the lead iodide (PbI2) precursor solution, is proposed to modulate crystallization kinetics and inhibit the generation of phase impurities of metastable pretreated perovskite film. The delayed crystallization process promotes a sufficient reaction between organic salts solution and inorganic Pb-I framework, and perovskite phase decomposition is prevented by forming strong hydrogen bonds between ─NH and I, resulting in the formation of uniform film with large-size crystal grains and high-purity crystalline phase. Ultimately, the target PSC devices achieve an impressive power conversion efficiency (PCE) of 25.05%, which is among the highest values of triple-cation (FAMACs) PSCs. Meanwhile, PSC modules with 10.8 cm2 obtain a PCE of 20.35%. Furthermore, the unencapsulated PSCs retain 94% of the initial efficiency after 40 days of storage under ambient conditions with 20% RH and also yield superior operational stability under light soaking at maximum power point tracking (MPPT) in nitrogen (N2) atmosphere.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410601-sup-0001-SuppMat.docx20 MB | Supporting Information |
smll202410601-sup-0002-cif.zip30.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. I. Seok, Nature. 2021, 598, 444.
- 2Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, J. You, Science. 2022, 377, 531.
- 3M. Taddei, J. A. Smith, B. M. Gallant, S. Zhou, R. J. E. Westbrook, Y. W. Shi, J. Wang, J. N. Drysdale, D. P. McCarthy, S. Barlow, S. R. Marder, H. J. Snaith, D. S. Ginger, ACS Energy Lett. 2022, 7, 4265.
- 4Y. Tu, X. Yang, R. Su, D. Luo, Y. Cao, L. Zhao, T. Liu, W. Yang, Y. Zhang, Z. Xu, Q. Liu, J. Wu, Q. Gong, F. Mo, R. Zhu, Adv. Mater. 2018, 30, 1805085.
- 5Y. Gao, K. Huang, C. Long, Y. Ding, J. Chang, D. Zhang, E. Lioz, M. Liu, J. Yang, ACS Energy Lett. 2022, 7, 1412.
- 6 National Renewable Energy Laboratory, Best Research Cell Efficiencies Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: May 2024).
- 7W. Zhou, S. Chen, Y. Zhao, Q. Li, Y. Zhao, R. Fu, D. Yu, P. Gao, Q. Zhao, Adv. Funct. Mater. 2019, 29, 1809180.
- 8Q. Zhang, K. Conkle, Z. Ahmad, P. C. Ray, W. Kołodziejczyk, G. A. Hill, X. Gu, Q. Dai, Sol. RRL. 2021, 5, 2100640.
- 9W. Hu, W. Zhou, X. Lei, P. Zhou, M. Zhang, T. Chen, H. Zeng, J. Zhu, S. Dai, S. Yang, S. Yang, Adv. Mater. 2019, 31, 1806095.
- 10Y. Zou, X. Bai, S. Kahmann, L. Dai, S. Yuan, S. Yin, J. E. Heger, M. Schwartzkopf, S. V. Roth, C.-C. Chen, J. Zhang, S. D. Stranks, R. H. Friend, P. Müller-Buschbaum, Adv. Mater. 2023, 2307024.
- 11T. Yang, L. Gao, J. Lu, C. Ma, Y. Du, P. Wang, Z. Ding, S. Wang, P. Xu, D. Liu, H. Li, X. Chang, J. Fang, W. Tian, Y. Yang, S. (Frank) Liu, K. Zhao, Nat. Commun. 2023, 14, 839.
- 12S. Wu, J. Zhang, Z. Li, D. Liu, M. Qin, S. H. Cheung, X. Lu, D. Lei, S. K. So, Z. Zhu, A. K. Y. Jen, Joule. 2020, 4, 1248.
- 13D. S. Ahmed, B. K. Mohammed, M. K. A. Mohammed, J. Mater. Sci. 2021, 56, 15205.
- 14Y. Zhang, Y. Wang, X. Yang, L. Zhao, R. Su, J. Wu, D. Luo, S. Li, P. Chen, M. Yu, Q. Gong, R. Zhu, Adv. Mater. 2022, 34, 2107420.
- 15S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong, A. Mei, H. Han, Adv. Energy Mater. 2020, 10, 1902492.
- 16F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng, D. Wang, Y. Li, F. Qi, Z. Zhang, Z. Yang, S.-H. Jang, F. R. Lin, S.-W. Tsang, X.-K. Chen, A. K.-Y. Jen, Nat. Photonics. 2023, 17, 478.
- 17M. D. Humadi, H. T. Hussein, M. S. Mohamed, M. K. A. Mohammed, E. Kayahan, Opt. Mater. 2021, 112, 110794.
- 18C. Long, E. Feng, J. Chang, Y. Ding, Y. Gao, H. Li, B. Liu, Z. Zheng, L. Ding, J. Yang, Appl. Phys. Lett. 2024, 124, 123908.
- 19Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu, Y. Chen, K. Li, X. Niu, N. Li, G. Liu, Y. Zhang, H. Zai, Q. Chen, T. Lei, L. Wang, H. Zhou, Nature. 2023, 623, 531.
- 20Z. Cheng, Y. Fang, A. Wang, T. Ma, F. Liu, S. Gao, S. Yan, Y. Di, T. Qin, J. Cent. South Univ. 2021, 28, 3714.
- 21D. S. Ahmed, M. K. A. Mohammed, Sol. Energy. 2020, 207, 1240.
- 22W. Shao, H. Wang, F. Ye, C. Wang, C. Wang, H. Cui, K. Dong, Y. Ge, T. Wang, W. Ke, G. Fang, Energy Environ. Sci. 2023, 16, 252.
- 23L. Yan, H. Huang, P. Cui, S. Du, Z. Lan, Y. Yang, S. Qu, X. Wang, Q. Zhang, B. Liu, X. Yue, X. Zhao, Y. Li, H. Li, J. Ji, M. Li, Nat. Energy. 2023, 8, 1158.
- 24M. Li, H. Li, Q. Zhuang, D. He, B. Liu, C. Chen, B. Zhang, T. Pauporté, Z. Zang, J. Chen, Angew. Chem., Int. Ed. 2022, 61, 202206914.
- 25J. Chang, K. Liu, S. Lin, Y. Yuan, C. Zhou, J. Yang, J. Cent. South Univ. 2020, 1104.
10.1007/s11771-020-4353-7 Google Scholar
- 26N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I.l Seok, Nat. Mater. 2014, 13, 897.
- 27T. Ji, T. Niu, J. Wang, R. Lu, Z. Wen, D. Luo, J. C. Huang, Y. Min, S. Wang, Y. N. Luponosov, S. Pan, Y. Chen, Q. Xue, J. Mater. Chem. A. 2022, 10, 13625.
- 28J. Deng, H. Ahangar, Y. Xiao, Y. Luo, X. Cai, Y. Li, D. Wu, L. Yang, E. Sheibani, J. Zhang, Adv. Funct. Mater. 2023, 2309484.
- 29J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu, Y. Zhang, Y. Yi, Y. Wei, N. Chen, T. Lin, F. Wang, C. Li, J. Wang, ACS Energy Lett. 2019, 4, 2913.
- 30Q. Cao, T. Wang, J. Yang, Y. Zhang, Y. Li, X. Pu, J. Zhao, H. Chen, X. Li, I. Tojiboyev, J. Chen, L. Etgar, X. Li, Adv. Funct. Mater. 2022, 32, 2201036.
- 31J. Chen, Y. Xiong, Y. Rong, A. Mei, Y. Sheng, P. Jiang, Y. Hu, X. Li, H. Han, Nano Energy. 2016, 27, 130.
- 32W. Zhang, W. Zhang, K. Wang, Y. Chu, J. Du, A. Mei, Y. Rong, Y. Hu, H. Han, Chem. Mater. 2021, 33, 4014.
- 33C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang, J. Chen, Z. Zang, Nano-Micro Lett. 2023, 15, 17.
- 34M. R. Filip, F. Giustino, Phys. Rev. B. 2014, 90, 245145.
- 35S. Wang, X. Zhang, W. Zhu, Z. Tang, J. Liu, H. Zhang, L. Ding, F. Hao, Applied Surf. Sci. 2022, 602, 154393.
- 36C. Zhang, S. Yuan, Y. Lou, Q. Liu, M. Li, H. Okada, Z. Wang, Adv.Mater. 2020, 32, 2001479.
- 37L. Canil, T. Cramer, B. Fraboni, D. Ricciarelli, D. Meggiolaro, A. Singh, M. Liu, M. Rusu, C. M. Wolff, N. Phung, Q. Wang, D. Neher, T. Unold, P. Vivo, A. Gagliardi, F. D. Angeliscd, A. Abate, Energy Environ. Sci. 2021, 14, 1429.
- 38Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che, G. Chen, H. Gao, D. He, G. Ma, J. Wang, J. Xiu, H. Yi, T. Chen, Z. He, Nature. 2023, 620, 545.
- 39Q. Wang, W. Zhang, Z. Zhang, S. Liu, J. Wu, Y. Guan, A. Mei, Y. Rong, Y. Hu, H. Han, Adv. Energy Mater. 2020, 10, 1903092.
- 40Q. Cheng, B. Wang, G. Huang, Y. Li, X. Li, J. Chen, S. Yue, K. Li, H. Zhang, Y. Zhang, H. Zhou, Angew. Chem., Int. Ed. 2022, 61, 202208264.
- 41S. Chen, T. Zhang, X. Liu, J. Qiao, L. Peng, J. Wang, Y. Liu, T. Yang, J. Lin, J. Mater. Chem. C. 2020, 8, 3351.
- 42T. Chen, J. Xie, B. Wen, Q. Yin, R. Lin, S. Zhu, P. Gao, Nat. Commun. 2023, 14, 6125.
- 43C. Das, M. Wussler, T. Hellmann, T. Mayer, I. Zimmermann, C. Maheu, M. K. Nazeeruddin, W. Jaegermann, ACS Appl. Mater. Interfaces. 2020, 12, 40949.
- 44I. Ismail, J. Wei, X. Sun, W. Zha, M. Khalil, L. Zhang, R. Huang, Z. Chen, Y. Shen, F. Li, Q. Luo, C. Ma, Sol. RRL. 2020, 4, 2000289.
- 45J. Chen, H. Dong, J. Li, X. Zhu, J. Xu, F. Pan, R. Xu, J. Xi, B. Jiao, X. Hou, K. Wei, Ng, S.-P. W., Z. Wu, ACS Energy Lett. 2022, 7, 3685.
- 46C. Su, R. Wang, J. Tao, J. Shen, D. Wang, L. Wang, G. Fu, S. Yang, M. Yuan, T. He, J. Mater. Chem. A. 2023, 11, 6565.
- 47J. Chen, H. Dong, J. Li, X. Zhu, J. Xu, F. Pan, R. Xu, J. Xi, B. Jiao, X. Hou, K. Wei, Ng, S. P. W., Z. Wu, ACS Energy Lett. 2022, 7, 3685.
- 48S. Kim, J. Jang, Z. Wu, M. Lee, H. Woo, I. Hwang, Small. 2021, 17, 2101839.
- 49S. Zeiske, O. J. Sandberg, N. Zarrabi, W. Li, P. Meredith, A. Armin, Nat. Commun. 2021, 12, 3603.
- 50H. Chen, Y. Wang, Y. Fan, Y. Chen, Y. Miao, Z. Qin, X. Wang, X. Liu, K. Zhu, F. Gao, Y. Zhao, Natl. Sci. Rev. 2022, 9, nwac127.
- 51L. Gao, H. Su, Z. Xu, Y. Hu, J. Zhang, S. (Frank) Liu, Sol. RRL. 2021, 5, 2100416.
- 52R. Yekani, H. Chiu, D. Strandell, Z. Wang, S. Bessette, R. Gauvin, P. Kambhampati, G. P. Demopoulos, Nanoscale. 2023, 15, 2152.