Enhancing Potassium-Ion Storage through Nanostructure Engineering and Ion-Doped: A Case Study of Cu2+-Doped Co0.85Se with Yolk-Shell Structure
Daming Chen
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorYang Ming
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorWei Cai
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorZhen Wang
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorBenjamin Tawiah
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorShuo Shi
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorXin Hu
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorRujun Yu
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorChi-sun Poon
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorCorresponding Author
Bin Fei
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
E-mail: [email protected]
Search for more papers by this authorDaming Chen
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorYang Ming
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorWei Cai
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorZhen Wang
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorBenjamin Tawiah
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorShuo Shi
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorXin Hu
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorRujun Yu
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorChi-sun Poon
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
Search for more papers by this authorCorresponding Author
Bin Fei
Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Fabricating transition metal selenide (TMSe) anode materials with rapid K+ diffusion and high-rate performance is crucial for the advancement of potassium-ion batteries (PIBs), yet it remains a challenge. In this study, a Cu2+-doped Co0.85Se@N-doped carbon anode with an optimal concentration of Cu2+-doped and yolk-shell structure (denoted as Cu-Co0.85Se@NC-2) is developed to enhance the reaction kinetics and cycling life. The Cu2+-doped modulates the electronic structure of the Co0.85Se interface, improves the diffusion and adsorption of K+, and further promotes the charge transport efficiency, as demonstrated by theoretical calculations and experimental results. In addition, an optimal Cu2+-doped content is identified that is conducive to achieving the best structure and electrochemical performance. Moreover, the N-doped carbon shell effectively enhances the conductivity of the electrode and alleviates the volume change of Co0.85Se yolk during cycling. Benefiting from the above advantages, the obtained Cu-Co0.85Se@NC-2 anode exhibits excellent rate performance (208.1 mA h g−1 at 10 A g−1) and cycling stability (239.7 mA h g−1 at 2 A g−1 after 500 cycles, the capacity retention rate is up to 80.4%). This work integrates nanostructure engineering and ion-doped to provide a straightforward and effective strategy for designing advanced high-rate TMSe anodes for next-generation PIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408792-sup-0001-SuppMat.docx6.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. C. Evarts, Nature 2015, 526, S93.
- 2M. Han, J. Liu, C. Deng, J. Guo, Y. Mu, Z. Zou, K. Zheng, F. Yu, Q. Li, L. Wei, L. Zeng, T. Zhao, Adv. Energy Mater. 2024, 14, 2400246.
- 3Y. Xu, Y. Du, H. Chen, J. Chen, T. Ding, D. Sun, D. H. Kim, Z. Lin, X. Zhou, Chem. Soc. Rev. 2024, 53, 7202.
- 4H. Deng, L. Wang, S. Li, M. Zhang, T. Wang, J. Zhou, M. Chen, S. Chen, J. Cao, Q. Zhang, J. Zhu, B. Lu, Adv. Funct. Mater. 2021, 31, 2107246.
- 5Y. Liu, X. Hu, J. Li, G. Zhong, J. Yuan, H. Zhan, Y. Tang, Z. Wen, Nat. Commun. 2022, 13, 663.
- 6N. Hussain, M. Li, B. Tian, H. Wang, Adv. Mater. 2021, 33, 3392102164.
10.1002/adma.202102164 Google Scholar
- 7J.-Y. Hwang, H. M. Kim, C. S. Yoon, Y.-K. Sun, ACS Energy Lett. 2018, 3, 540.
- 8J. Zhou, Y. Liu, S. Zhang, T. Zhou, Z. Guo, InfoMat 2020, 2, 437.
- 9M. Ma, S. Chong, K. Yao, H. K. Liu, S. X. Dou, W. Huang, Matter 2023, 6, 3220.
- 10H. Zhang, Y. Cheng, Q. Zhang, W. Ye, X. Yu, M. S. Wang, ACS Nano 2021, 15, 10107.
- 11K. Sada, J. Darga, A. Manthiram, Adv. Energy Mater. 2023, 13, 2302321.
- 12W. Feng, X. Wei, F. Cao, Y. Li, X. Zhang, Y. Li, W. Liu, J. Han, D. Kong, L. Zhi, Energy Storage Mater. 2024, 65, 103186.
- 13C. Lamiel, I. Hussain, H. Rabiee, O. R. Ogunsakin, K. Zhang, Coordin. Chem. Rev. 2023, 480, 215030.
- 14Q. Yun, L. Li, Z. Hu, Q. Lu, B. Chen, H. Zhang, Adv. Mater. 2020, 32, 1903826.
- 15Y. Liu, Q. Deng, Y. Li, Y. Li, W. Zhong, J. Hu, X. Ji, C. Yang, Z. Lin, K. Huang, ACS Nano 2021, 15, 1121.
- 16Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao, L. Sheng, Y. Chen, Y. Wu, H. Zhan, Z. Wen, Nano-Micro Lett. 2023, 15, 104.
- 17D. Chen, Y. Liu, P. Feng, X. Tao, Z. Huang, X. Zhang, M. Zhou, J. Chen, J. Energy Chem. 2024, 91, 111.
- 18W. W. Shen, Y. Y. Hsieh, H. Y. Tuan, J. Colloid. Interf. Sci. 2023, 643, 626.
- 19C. Atangana Etogo, H. Huang, H. Hong, G. Liu, L. Zhang, Energy Storage Mater. 2020, 24, 167.
- 20N. Ren, L. Wang, J. Dong, K. Cao, Y. Li, F. Chen, J. Xiao, B. Pan, C. Chen, Chem. Eng. J. 2023, 458, 141489.
- 21Y. Yin, Y. Zhang, N. Liu, L. Fan, N. Zhang, Energy Environ. Mater. 2020, 3, 529.
- 22X. F. Lu, Y. Fang, D. Luan, X. W. D. Lou, Nano Lett. 2021, 21, 1555.
- 23W. Yang, J. Wang, J. Jian, Energy Storage Mater. 2024, 66, 103249.
- 24J. Feng, S.-h. Luo, S.-x. Yan, Y. Zhan, Q. Wang, Y.-h. Zhang, X. Liu, L.-j. Chang, Small 2021, 17, 2101887.
- 25D. Chen, S. Sun, G. Yu, L. Qin, W. Wang, M. Jiang, J. Chen, Carbon 2020, 166, 91.
- 26H. Shan, J. Qin, J. Wang, H. M. K. Sari, L. Lei, W. Xiao, W. Li, C. Xie, H. Yang, Y. Luo, G. Zhang, X. Li, Adv. Sci. (Weinh) 2022, 9, 2200341.
- 27B. Chen, D. Chao, E. Liu, M. Jaroniec, N. Zhao, S.-Z. Qiao, Energy Environ. Sci. 2020, 13, 1096.
- 28Y. Dou, C. T. He, L. Zhang, H. Yin, M. Al-Mamun, J. Ma, H. Zhao, Nat. Commun. 2020, 11, 1664.
- 29W. Zhang, Z. Cao, W. Wang, E. Alhajji, A. H. Emwas, P. Costa, L. Cavallo, H. N. Alshareef, Angew. Chem., Int. Ed. 2020, 59, 4448.
- 30L. Pan, R. Hu, Y. Zhang, D. Sha, X. Cao, Z. Li, Y. Zhao, J. Ding, Y. Wang, Z. Sun, Nano-Micro Lett. 2023, 15, 225.
- 31X. Zhao, F. Zhang, H. Li, H. Dong, C. Yan, C. Meng, Y. Sang, H. Liu, Y.-G. Guo, S. Wang, Energy Environ. Sci. 2024, 17, 3629.
- 32Z. Liu, K. Han, P. Li, W. Wang, D. He, Q. Tan, L. Wang, Y. Li, M. Qin, X. Qu, Nano-Micro Lett. 2019, 11, 96.
- 33Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang, X. Xia, Adv. Energy Mater. 2020, 10, 2000927.
- 34L. Hu, P. Zhong, J. Zhu, J. Wang, Y. Zheng, X. Lin, Y. Zhang, H. Yang, CrystEngComm 2024, 26, 4804.
- 35Y. Huang, Z. Wang, Y. Jiang, S. Li, Z. Li, H. Zhang, F. Wu, M. Xie, L. Li, R. Chen, Nano Energy 2018, 53, 524.
- 36S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309.
- 37W. An, P. He, Z. Che, C. Xiao, E. Guo, C. Pang, X. He, J. Ren, G. Yuan, N. Du, D. Yang, D.-L. Peng, Q. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 10308.
- 38X. Hu, X. Liu, K. Chen, G. Wang, H. Wang, J. Mater. Chem. A 2019, 7, 11016.
- 39L. Yao, Q. Gu, X. Yu, ACS Nano 2021, 15, 3228.
- 40H. Chen, M. Huang, X. Cao, S. Wei, Y. Zhao, Z. Lu, Y. Liu, L. Zhong, Y. Qiu, Chem. Eng. J. 2024, 486, 150187.
- 41S. Tao, X. Zhang, Z. Gao, T. Y. Chen, H. Min, H. Yang, H. Y. Chen, X. Shen, J. Wang, H. Yang, Small 2023, 19, 2304200.
- 42D. Wang, H. He, L. Han, R. Lin, J. Wang, Z. Wu, H. Liu, H. L. Xin, Nano Energy 2016, 20, 212.
- 43J. Gong, R. Zhang, X. Wei, Y. Liu, Q. Luo, Q. Wan, Q. Zheng, L. Wang, S. Liu, D. Lin, Chem. Eng. J. 2023, 459, 141609.
- 44S. H. Yang, Y. J. Lee, H. Kang, S.-K. Park, Y. C. Kang, Nano-Micro Lett. 2021, 14, 17.
- 45Y. Ding, L. Zhang, X. Gao, M. Wei, Q. Liu, Y. Li, Z. Li, L. Cheng, M. Wu, Small 2024, 20, 2307095.
- 46P. Li, T. Huang, Y. Lou, H. He, X. Tang, Y. Cai, M. Zhang, J. Energy Storage 2024, 78, 109951.
10.1016/j.est.2023.109951 Google Scholar
- 47Y. Xu, Y. Li, T. Wang, Q. Liu, X. Fang, X. Ding, Z. Chen, C. Zhang, H. Niu, H. Zhou, H. Li, Chem. Eng. J. 2024, 479, 147848.
- 48Z. Tang, S. Zhou, Y. Huang, H. Wang, R. Zhang, Q. Wang, D. Sun, Y. Tang, H. Wang, Electrochem. Energy Rev. 2023, 6, 8.
- 49H. He, D. Huang, Q. Gan, J. Hao, S. Liu, Z. Wu, W. K. Pang, B. Johannessen, Y. Tang, J. L. Luo, H. Wang, Z. Guo, ACS Nano 2019, 13, 11843.
- 50J. Y. Park, S. J. Kim, J. H. Chang, H. K. Seo, J. Y. Lee, J. M. Yuk, Nat. Commun. 2018, 9, 922.
- 51N. Hussain, M. Li, B. Tian, H. Wang, Adv. Mater. 2021, 33, 2102164.
- 52Q. Xiao, Q. Song, K. Zheng, L. Zheng, Y. Zhu, Z. Chen, Nano Energy 2022, 98, 107326.
- 53D. Sha, Y. You, R. Hu, X. Cao, Y. Wei, H. Zhang, L. Pan, Z. Sun, Adv. Mater. 2023, 35, 2211311.
- 54G. Ma, C. Li, F. Liu, M. K. Majeed, Z. Feng, Y. Cui, J. Yang, Y. Qian, Mater. Today Energy 2018, 10, 241.
- 55D. Sha, Y. You, R. Hu, X. Cao, Y. Wei, H. Zhang, L. Pan, Z. Sun, Energy Storage Mater. 2023, 58, 165.
- 56S. Nanda, A. Bhargav, Z. Jiang, X. Zhao, Y. Liu, A. Manthiram, Energy Environ. Sci. 2021, 14, 5423.
- 57D. Sha, Y. You, R. Hu, J. Ding, X. Cao, Y. Zhang, L. Pan, Z. Sun, Carbon Energy 2024, e563.
10.1002/cey2.563 Google Scholar
- 58D. Chen, Y. Wu, Z. Huang, K. Wang, X. Zhu, Z. Wang, J. Chen, Chem. Eng. J. 2023, 457, 141181.
- 59S. Kane, A. Storer, W. Xu, C. Ryan, N. P. Stadie, ACS Sustainable Chem. Eng. 2022, 10, 12226.
- 60K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu, F. Li, J. Chen, Angew. Chem., Int. Ed. 2018, 57, 4687.