Linkage Engineering of Semiconductive Covalent-Organic Frameworks toward Room-Temperature Ppb-Level Selective Ammonia Sensing
Zhuang Yan
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorMunan Fang
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorLongfei Wang
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHuiwen Gao
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYue Ying
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJinlei Yang
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJiahua Wang
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Yaling Liu
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiyong Tang
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhuang Yan
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorMunan Fang
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorLongfei Wang
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHuiwen Gao
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYue Ying
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJinlei Yang
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJiahua Wang
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Yaling Liu
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiyong Tang
CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Rational design of molecular architectures is crucial for developing advanced materials such as covalent-organic frameworks (COFs) with excellent sensing performance. In this work, two isostructural COFs (β-keto-AnCOF and imine-AnCOF) with the same conjugated linkers but distinct linkages are constructed. Although both COFs have porous structure and semiconductor behavior conferred by the identical conjugated backbones, β-keto-AnCOF with ─C═O side groups exhibits superior room-temperature ammonia (NH3) sensing performance than imine-AnCOF and even the state-of-the-art dynamic and commercial NH3 sensors, i.e., high sensitivity up to 18.94% ppm−1, ultralow experimental detection limit of 1 ppb, outstanding selectivity, and remarkable response stability and reproducibility after 180 days. In situ spectroscopy and theoretical calculation reveal that the additional charge transfer between NH3 and ─C═O sites in β-keto-AnCOF effectively increases the distance between Fermi level and the valence band, enabling highly-sensitive NH3 detection at ppb levels. This work provides novel molecular architectures for next-generation high-performance sensors.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supporting information of this article.
Supporting Information
Filename | Description |
---|---|
smll202407436-sup-0001-SuppMat.docx17.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. Meulenbelt, Medicine 2012, 40, 94;
10.1016/j.mpmed.2011.11.006 Google Scholarb) M. Insausti, R. Timmis, R. Kinnersley, M. C. Rufino, Sci. Total Environ. 2020, 706, 135124; c) H. Huszár, A. Pogány, Z. Bozóki, Á. Mohácsi, L. Horváth, G. Szabó, Sens. Actuator B-Chem. 2008, 134, 1027.
- 2a) B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, E. K. Suh, Mater. Charact. 2007, 58, 680; b) A. Dey, Mater. Sci. Eng. B 2018, 229, 206.
- 3a) T. Kim, Y. Kim, S. Park, S. Kim, H. Jang, Chemosensors 2017, 5, 15; b) H. Tang, L. N. Sacco, S. Vollebregt, H. Ye, X. Fan, G. Zhang, J. Mater. Chem. A 2020, 8, 24943.
- 4a) X. Tang, M. Debliquy, D. Lahem, Y. Yan, J. P. Raskin, Sensors 2021, 21, 1443; b) Z. Ben Aziza, Q. Zhang, D. Baillargeat, Appl. Phys. Lett. 2014, 105, 254102.
- 5a) M. Tiemann, Chem.-Eur. J. 2007, 13, 8376; b) Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, J. H. Liu, Sensors 2012, 12, 2610.
- 6a) C. Wang, Z. Zhang, Y. Zhu, C. Yang, J. Wu, W. Hu, Adv. Mater. 2022, 34, 2102290; b) Z. Meng, R. M. Stolz, L. Mendecki, K. A. Mirica, Chem. Rev. 2019, 119, 478.
- 7a) M. S. Lohse, T. Bein, Adv. Funct. Mater. 2018, 28, 1705553; b) X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010; c) P. J. Waller, F. Gandara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053; d) X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871; e) Y. Zhi, Z. Wang, H.-L. Zhang, Q. Zhang, Small 2020, 16, 2001070; f) Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Chem. Soc. Rev. 2020, 49, 708; g) Z. Qu, C. Lai, G. Zhao, A. Knebel, H. Fan, H. Meng, Adv. Membr. 2022, 2, 100037; h) X. Zhan, Z. Chen, Q. Zhang, J. Mater. Chem. A 2017, 5, 14463; i) P. Ghosh, P. Banerjee, Chem. Commun. 2023, 59, 12527; j) X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, S. Chen, Chem. Soc. Rev. 2019, 48, 5266; k) S. Daliran, M. Blanco, A. Dhakshinamoorthy, A. R. Oveisi, J. Alemán, H. García, Adv. Funct. Mater. 2024, 24, 2312912; l) Y. Xiong, Q. Liao, Z. Huang, X. Huang, C. Ke, H. Zhu, C. Dong, H. Wang, K. Xi, P. Zhan, F. Xu, Y. Lu, Adv. Mater. 2020, 32, 1907242; m) S. Bag, H. S. Sasmal, S. P. Chaudhary, K. Dey, D. Blatte, R. Guntermann, Y. Zhang, M. Polozij, A. Kuc, A. Shelke, R. K. Vijayaraghavan, T. G. Ajithkumar, S. Bhattacharyya, T. Heine, T. Bein, R. Banerjee, J. Am. Chem. Soc. 2023, 145, 1649.
- 8a) A. Mei, Z. Yang, M. Zhou, W. Jin, Y. Liu, W. Chen, Anal. Sens. 2024, 4, 202300078; b) Y. Yue, P. Cai, X. Xu, H. Li, H. Chen, H. C. Zhou, N. Huang, Angew. Chem., Int. Ed. 2021, 60, 10806.
- 9a) Z. Meng, R. M. Stolz, K. A. Mirica, J. Am. Chem. Soc. 2019, 141, 11929; b) K. Xu, N. Huang, Chem. Res. Chin. Univ. 2022, 38, 339; c) Z. Yang, A. Mei, W. Chen, Z. Wang, H. Guo, Y. Liu, Sens. Actuator B-Chem. 2023, 392, 134051.
- 10a) Y. Zhu, S. Jiang, X. Jing, X. Feng, Trends Chem. 2022, 4, 128; b) G. Bian, J. Yin, J. Zhu, Small 2021, 17, 2006043; c) M. Souto, D. F. Perepichka, J. Mater. Chem. C 2021, 9, 10668; d) F. Niu, Z.-W. Shao, J.-L. Zhu, L.-M. Tao, Y. Ding, J. Mater. Chem. C 2021, 9, 8562.
- 11a) S. Huang, B. Zhang, D. Wu, Y. Xu, H. Hu, F. Duan, H. Zhu, M. Du, S. Lu, Appl. Catal. B-Environ. 2024, 340, 123216; b) X. Li, S. Yang, M. Liu, X. Yang, Q. Xu, G. Zeng, Z. Jiang, Angew. Chem., Int. Ed. 2023, 62, e202304356; c) C. Qian, W. Zhou, J. Qiao, D. Wang, X. Li, W. L. Teo, X. Shi, H. Wu, J. Di, H. Wang, G. Liu, L. Gu, J. Liu, L. Feng, Y. Liu, S. Y. Quek, K. P. Loh, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 18138; d) Y. Li, M. Liu, J. Wu, J. Li, X. Yu, Q. Zhang, Front. Optoelectron. 2022, 15, 38.
- 12H. Li, J. Chang, S. Li, X. Guan, D. Li, C. Li, L. Tang, M. Xue, Y. Yan, V. Valtchev, S. Qiu, Q. Fang, J. Am. Chem. Soc. 2019, 141, 13324.
- 13a) C. L. Wang, Y. L. Liu, Z. M. Wei, H. X. Li, W. Xu, W. P. Hu, Appl. Phys. Lett. 2010, 96, 143302; b) X. Z. Cai, D. Y. Ji, L. Jiang, G. Y. Zhao, J. H. Tan, G. F. Tian, J. Z. Li, W. P. Hu, Appl. Phys. Lett. 2014, 104, 063305.
- 14a) J. Guo, W. S. Xu, Y. L. Chen, A. C. Lua, J. Colloid Interface Sci. 2005, 281, 285; b) C. Li, S. Zhao, M. Li, Z. Yao, Y. Li, C. Zhu, S.-M. Xu, J. Li, J. Yu, Front. Environ. Sci. 2023, 11, 976113.
- 15H. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 4862.
- 16S. Ghosh, A. Nakada, M. A. Springer, T. Kawaguchi, K. Suzuki, H. Kaji, I. Baburin, A. Kuc, T. Heine, H. Suzuki, R. Abe, S. Seki, J. Am. Chem. Soc. 2020, 142, 9752.
- 17a) X. Li, C. Zhang, S. Cai, X. Lei, V. Altoe, F. Hong, J. J. Urban, J. Ciston, E. M. Chan, Y. Liu, Nat. Commun. 2018, 9, 2998; b) G. Jiang, W. Zou, Z. Ou, W. Zhang, Z. Liang, L. Du, Chem.-Eur. J. 2023, 29, 202203610.
- 18a) S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde, B. Van der Bruggen, Chem. Soc. Rev. 2019, 48, 2665; b) M. Zhou, Y. Li, G. Xu, Trends Anal. Chem. 2024, 174, 117679.
- 19a) N. Barsan, U. Weimar, J. Electroceram. 2001, 7, ; b) N. Barsan, D. Koziej, U. Weimar, Sens. Actuator B-Chem. 2007, 121, 18; c) F. Hossein-Babaei, M. Orvatinia, Sens. Actuator B-Chem. 2003, 89, 256.
- 20a) M. Jeon, J.-S. Lee, M. Kim, J.-W. Seo, H. Kim, H. R. Moon, S.-J. Choi, J. Kim, ACS Appl. Mater. Interfaces 2024, 16, 62382; b) X. Chen, Y. Lu, J. Dong, L. Ma, Z. Yi, Y. Wang, L. Wang, S. Wang, Y. Zhao, J. Huang, Y. Liu, ACS Appl. Mater. Interfaces 2020, 12, 57235.
- 21a) N. Mkhize, K. Murugappan, M. R. Castell, H. Bhaskaran, J. Mater. Chem. C 2021, 9, 4591; b) V. Mounasamy, G. K. Mani, D. Ponnusamy, K. Tsuchiya, A. K. Prasad, S. Madanagurusamy, J. Mater. Chem. A 2018, 6, 6402; c) M. Shafiei, F. Hoshyargar, J. Lipton-Duffin, C. Piloto, N. Motta, A. P. O'Mullane, J. Phys. Chem. C 2015, 119, 22208; d) L. Li, P. Gao, M. Baumgarten, K. Mullen, N. Lu, H. Fuchs, L. Chi, Adv. Mater. 2013, 25, 3419; e) M. S. Yao, X. J. Lv, Z. H. Fu, W. H. Li, W. H. Deng, G. D. Wu, G. Xu, Angew. Chem., Int. Ed. 2017, 56, 16510; f) M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dinca, Angew. Chem., Int. Ed. 2015, 54, 4349; g) C. Huang, X. Shang, X. Zhou, Z. Zhang, X. Huang, Y. Lu, M. Wang, M. Loffler, Z. Liao, H. Qi, U. Kaiser, D. Schwarz, A. Fery, T. Wang, S. C. B. Mannsfeld, G. Hu, X. Feng, R. Dong, Nat. Commun. 2023, 14, 3850; h) F. Niu, Z.-W. Shao, L.-M. Tao, Y. Ding, Sens. Actuator B-Chem. 2020, 321, 128513; i) N. Sharma, N. Sharma, P. Srinivasan, S. Kumar, J. B. Balaguru Rayappan, K. Kailasam, J. Mater. Chem. A 2018, 6, 18389; j) S. Xu, K. Kan, Y. Yang, C. Jiang, J. Gao, L. Jing, P. Shen, L. Li, K. Shi, J. Alloys Compd. 2015, 618, 240.
- 22T. Yu, T. Hao, D. Fan, J. Wang, M. Shen, W. Li, J. Phys. Chem. C 2014, 118, 6565.
- 23a) J. Mattia, P. Painter, Macromolecules 2007, 40, 1546; b) I. S. Ryu, X. Liu, Y. Jin, J. Sun, Y. J. Lee, RSC Adv. 2018, 8, 23481.
- 24a) P. E. Blochl, Phys. Rev. B 1994, 50, 17953; b) V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033; c) J. Hafner, J. Comput. Chem. 2008, 29, 2044.
- 25R. C. Baetzold, Phys. Rev. B 1984, 29, 4211.