Engineering Multiresponsive Alginate/PNIPAM/Carbon Nanotube Nanocomposite Hydrogels as On-Demand Drug Delivery Platforms
Bo-Yan Li
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorTung-Yi Lin
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung branch, and Chang Gung University, Taoyuan, 33302 Taiwan
Search for more papers by this authorYi-Jhen Lai
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorTing-Hsiang Chiu
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Yi-Cheun Yeh
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
E-mail: [email protected]
Search for more papers by this authorBo-Yan Li
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorTung-Yi Lin
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung branch, and Chang Gung University, Taoyuan, 33302 Taiwan
Search for more papers by this authorYi-Jhen Lai
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorTing-Hsiang Chiu
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Yi-Cheun Yeh
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
E-mail: [email protected]
Search for more papers by this authorAbstract
Second near-infrared (NIR-II) responsive hydrogels have shown significant potential in biomedical applications due to their excellent remote actuation property and the high tissue penetrations of the NIR-II light. Nevertheless, hydrogels with a single NIR-II light response may not meet the diverse requirements and complex conditions of clinical applications. Here, a novel multi-responsive nanocomposite hydrogel with enhanced suitability for controlled drug release is developed. This nanocomposite hydrogel is constructed by combining alginate dialdehyde (ADA), polyethyleneimine (PEI), poly(N-isopropylacrylamide) (PNIPAM), and phenylboronic acid-modified polyethyleneimine (PBA-PEI) functionalized multi-walled carbon nanotubes (PP-CNT) through the formation of dynamic covalent bonds (i.e., imine bonds and boronate ester bonds), forming ADA/PEI/PNIPAM/PP-CNT (APN/PP-CNT) hydrogel. PNIPAM is incorporated into the hydrogel network to facilitate drug release triggered by its aggregation when subjected to the high temperatures produced by NIR-II light irradiation. The dynamic covalent bonds and CNT in the network provide the APN/PP-CNT nanocomposite hydrogels with responsiveness to multiple stimuli, including pH, hydrogen peroxide, temperature, and NIR-II light. The APN/PP-CNT nanocomposite hydrogel performs effective NIR-II light responsiveness in both in vitro and in vivo drug release, highlighting its potential as a promising drug delivery platform.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202407420-sup-0001-SuppMat.pdf4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Yin, T. Fan, N. Zheng, J. Yang, L. Yan, S. He, F. Ai, J. Hu, Nanoscale Adv. 2023, 5, 1729.
- 2Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, ACS Nano 2022, 16, 7486.
- 3G. Xie, X. Wang, M. Mo, L. Zhang, J. Zhu, Macromol. Biosci. 2023, 23, 2200378.
- 4Y. Zheng, Y. Yan, L. Lin, Q. He, H. Hu, R. Luo, D. Xian, J. Wu, Y. Shi, F. Zeng, C. Wu, G. Quan, C. Lu, Acta Biomater. 2022, 142, 113.
- 5A. Maleki, J. He, S. Bochani, V. Nosrati, M. A. Shahbazi, B. Guo, ACS Nano 2021, 15, 18895.
- 6R. Vangipuram, S. R. Feldman, Oral Dis 2016, 22, 253.
- 7A. Sakudo, Clin. Chim. Acta; 2016, 455, 181.
- 8E. Hemmer, A. Benayas, F. Legare, F. Vetrone, Nanoscale Horiz. 2016, 1, 168.
- 9X. Liu, B. Yu, Y. Shen, H. Cong, Coord. Chem. Rev. 2022, 468, 214609.
- 10S. Zhao, L. Zhang, L. Deng, J. Ouyang, Q. Xu, X. Gao, Z. Zeng, Y. N. Liu, Small 2021, 17, 2103003.
- 11C. H. Quek, K. W. Leong, Nanomaterials 2012, 2, 92.
- 12X. Deng, S. Liang, X. Cai, S. Huang, Z. Cheng, Y. Shi, M. Pang, P. Ma, J. Lin, Nano Lett. 2019, 19, 6772.
- 13C. Song, F. Li, X. Guo, W. Chen, C. Dong, J. Zhang, L. Wang, J. Mater. Chem. B 2019, 7, 2001.
- 14T. Yang, Y. Tang, L. Liu, X. Lv, Q. Wang, H. Ke, Y. Deng, H. Yang, X. Yang, G. Liu, Y. Zhao, H. Chen, ACS Nano 2017, 11, 1848.
- 15W. Sun, H. Yu, D. Wang, Y. Li, B. Tian, S. Zhu, P. Y. Wang, S. Xie, R. Wang, Biomater. Sci. 2021, 9, 3662.
- 16H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, J. Am. Chem. Soc. 2017, 139, 16235.
- 17H. Zhang, W. Zeng, C. Pan, L. Feng, M. Ou, X. Zeng, X. Liang, M. Wu, X. Ji, L. Mei, Adv. Funct. Mater. 2019, 29, 1903791.
- 18Y. Jiang, J. Li, X. Zhen, C. Xie, K. Pu, Adv. Mater. 2018, 30, 1705980.
- 19C. Yin, X. Li, G. Wen, B. Yang, Y. Zhang, X. Chen, P. Zhao, S. Li, R. Li, L. Wang, C. S. Lee, L. Bian, Biomaterials 2020, 232, 119684.
- 20Z. Xu, Y. Zhang, W. Zhou, L. Wang, G. Xu, M. Ma, F. Liu, Z. Wang, Y. Wang, T. Kong, B. Zhao, W. Wu, C. Yang, J. Nanobiotechnol. 2021, 19, 137.
- 21B. Geng, W. Shen, F. Fang, H. Qin, P. Li, X. Wang, X. Li, D. Pan, L. Shen, Carbon 2020, 162, 220.
- 22A. C. Estrada, A. L. Daniel-da-Silva, T. Trindade, RSC Adv. 2013, 3, 10828.
- 23A. Gangrade, B. Gawali, P. K. Jadi, V. G. M. Naidu, B. B. Mandal, ACS Appl. Mater. Interfaces 2020, 12, 27905.
- 24R. Nissler, O. Bader, M. Dohmen, S. G. Walter, C. Noll, G. Selvaggio, U. Gross, S. Kruss, Nat. Commun. 2020, 11, 5995.
- 25X. Huang, L. Tang, L. Xu, Y. Zhang, G. Li, W. Peng, X. Guo, L. Zhou, C. Liu, X. C. Shen, J. Mater. Chem. B 2022, 10, 7717.
- 26Y. Zhu, Q. Zeng, Q. Zhang, K. Li, X. Shi, F. Liang, D. Han, Nanoscale 2020, 12, 8679.
- 27Z. Lu, S. Liu, Y. Le, Z. Qin, M. He, F. Xu, Y. Zhu, J. Zhao, C. Mao, L. Zheng, Biomaterials 2019, 218, 119190.
- 28F. Wang, B. Wang, X. Xu, X. Wang, P. Jiang, Z. Hu, X. Wang, J. Lei, Adv. Healthcare Mater. 2023, 12, 2300834.
- 29X. E. Chen, C. J. Yan, C. H. Lu, Y. C. Yeh, ACS Appl. Polym. Mater. 2024, 6, 7340.
- 30K. Thirupathi, T. T. V. Phan, M. Santhamoorthy, V. Ramkumar, S. C. Kim, Polymers 2022, 15, 167.
- 31M. Liu, X. Song, Y. Wen, J. L. Zhu, J. Li, ACS Appl. Mater. Interfaces 2017, 9, 35673.
- 32M. Liu, J. Zhu, X. Song, Y. Wen, J. Li, Gels 2022, 8, 441.
- 33J. H. Choi, J. S. Lee, D. H. Yang, H. Nah, S. J. Min, S. Y. Lee, J. H. Yoo, H. J. Chun, H. J. Moon, Y. K. Hong, D. N. Heo, I. K. Kwon, ACS Omega 2023, 8, 44076.
- 34K. H. Shen, Y. Y. Yeh, T. H. Chiu, R. Wang, Y. C. Yeh, ACS Biomater. Sci. Eng. 2022, 8, 4249.
- 35M. A. Cooperstein, H. E. Canavan, Biointerphases 2013, 8, 19.
- 36J. Li, C. Peng, Z. Wang, J. Ren, RSC Adv. 2018, 8, 17551.
- 37G. Springsteen, B. Wang, Chem. Commun. 2001, 17, 1608.
- 38R. Singh, S. A. Deshmukh, G. Kamath, S. K. R. S. Sankaranarayanan, G. Balasubramanian, Comput. Mater. Sci. 2017, 126, 191.
- 39S. Kirchhof, M. Abrami, V. Messmann, N. Hammer, A. M. Goepferich, M. Grassi, F. P. Brandl, Mol. Pharm. 2015, 12, 3358.
- 40K. K. Mali, S. C. Dhawale, R. J. Dias, N. S. Dhane, V. S. Ghorpade, Indian J. Pharm. Sci. 2018, 80, 657.
- 41G. R. Deen, V. Chua, U. Ilyas, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3363.
- 42L. Y. Xiaocheng Fan, T. Wang, Eur. Polym. J. 2019, 121, 109290.
10.1016/j.eurpolymj.2019.109290 Google Scholar
- 43Y. Yang, J. Wang, S. Huang, M. Li, J. Chen, D. Pei, Z. Tang, B. Guo, Natl. Sci. Rev. 2024, 11, nwae044.
- 44L. R. Bennison, C. N. Miller, R. J. Summers, A. M. B. Minnis, G. Sussman, W. McGuiness, Wound Pract. Res. 2017, 25, 63.
- 45A. R. Kim, S. L. Lee, S. N. Park, Int. J. Biol. Macromol. 2018, 118, 731.
- 46J. Y. Li, Y. H. Feng, Y. T. He, L. F. Hu, L. Liang, Z. Q. Zhao, B. Z. Chen, X. D. Guo, Acta Biomater. 2022, 153, 308.
- 47L. Fan, X. Zhang, X. Liu, B. Sun, L. Li, Y. Zhao, Adv. Healthcare Mater. 2021, 10, 2002249.
- 48F. Pan, S. Zhang, S. Altenried, F. Zuber, Q. Chen, Q. Ren, Biomater. Sci. 2022, 10, 6146.
- 49H. Feil, Y. H. Bae, J. Feijen, S. W. Kim, Macromolecules 1993, 26, 2496.
- 50Z. Wei, Q. Lin, J. Yang, S. Long, G. Zhang, X. Wang, Mater. Sci. Eng. C 2020, 115, 111050.
- 51P. Bi, X. Zhu, L. Tian, J. Han, W. Zhang, T. Wang, Polymers 2024, 16, 1248.
- 52X. Song, Z. Zhang, J. Zhu, Y. Wen, F. Zhao, L. Lei, N. Phan-Thien, B. C. Khoo, J. Li, Biomacromolecules 2020, 21, 1516.
- 53M. Weber, H. Steinle, S. Golombek, L. Hann, C. Schlensak, H. P. Wendel, M. Avci-Adali, Front. Bioeng. Biotechnol. 2018, 6, 99.
- 54J. Hoque, B. Bhattacharjee, R. G. Prakash, K. Paramanandham, J. Haldar, Biomacromolecules 2018, 19, 267.
- 55X. Xu, Y. Liu, W. Fu, M. Yao, Z. Ding, J. Xuan, D. Li, S. Wang, Y. Xia, M. Cao, Polymers 2020, 12, 580.
- 56M. J. Ansari, R. R. Rajendran, S. Mohanto, U. Agarwal, K. Panda, K. Dhotre, R. Manne, A. Deepak, A. Zafar, M. Yasir, S. Pramanik, Gels 2022, 8, 454.
- 57N. Ahmad, S. N. A. Bukhari, M. A. Hussain, H. Ejaz, M. U. Munir, M. W. Amjad, RSC Adv. 2024, 14, 13535.
- 58T. V. Patil, D. K. Patel, S. D. Dutta, K. Ganguly, A. Randhawa, K. T. Lim, Appl. Sci. 2021, 11, 9550.
- 59S. Kang, M. Herzberg, D. F. Rodrigues, M. Elimelech, Langmuir 2008, 24, 6409.
- 60M. A. Andersson, L. B. Madsen, A. Schmidtchen, M. Puthia, Int. J. Mol. Sci. 2021, 22, 5045.
- 61E. Cetin, I. Daldal, A. Eren, S. O. Akarca Dizakar, S. Omeroglu, B. Uzuner, H. H. Celik, H. H. Saygili, B. Kockar, A. Senkoylu, Acta Orthop. Traumatol. Turc. 2019, 53, 134.
- 62P. G. Cho, G. Y. Ji, Y. Ha, H. Y. Lee, D. A. Shin, Spine J. 2019, 19, 1106.
- 63C. C. Hu, S. R. Kumar, T. T. T. Vi, Y. T. Huang, D. W. Chen, S. J. Lue, Int. J. Mol. Sci. 2021, 23, 359.
- 64Y. H. Hsu, C. C. Hu, P. H. Hsieh, H. N. Shih, S. W. Ueng, Y. Chang, J. Bone Joint Surg. Am. 2017, 99, 223.
- 65S. Li, Y. Zhang, Z. Guan, H. Li, M. Ye, X. Chen, J. Shen, Y. Zhou, Z. L. Shi, P. Zhou, K. Peng, Signal Transduction Target. Ther. 2020, 5, 235.
- 66Y. Wu, Y. Liu, H. Huang, Y. Zhu, Y. Zhang, F. Lu, C. Zhou, L. Huang, X. Li, C. Zhou, Mediators Inflamm. 2013, 2013, 562154.
- 67K. M. Krause, A. W. Serio, T. R. Kane, L. E. Connolly, Cold Spring Harbor Perspect. Med. 2016, 6, a027029.
- 68J. Allport, R. Choudhury, P. Bruce-Wootton, M. Reed, D. Tate, A. Malviya, Antimicrob. Resist. Infect. Control 2022, 11, 5.
- 69C. Blanchard, L. Brooks, A. Beckley, J. Colquhoun, S. Dewhurst, P. M. Dunman, Antimicrob. Agents Chemother. 2016, 60, 862.
- 70G. Gao, Y. W. Jiang, H. R. Jia, F. G. Wu, Biomaterials 2019, 188, 83.
- 71S. W. Zhou, C. Yu, M. Chen, C. Y. Shi, R. Gu, D. H. Qu, Smart Mol. 2023, 1, 20220009.
- 72A. Chao, I. Negulescu, D. Zhang, Macromolecules 2016, 49, 6277.