Synergistic Doping Strategy with Novel Multi-Carbonyl Conductive Polymer Enables Stable Self-Powered Perovskite Photodetectors
Lixian Jiang
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorHaoran Tang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorJiangshan He
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiaobo Liu
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiangyu Liu
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorJiuyao Du
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorHai Xiao
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Fei Huang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dongxin Ma
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guifang Dong
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLixian Jiang
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorHaoran Tang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorJiangshan He
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiaobo Liu
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiangyu Liu
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorJiuyao Du
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorHai Xiao
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Fei Huang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dongxin Ma
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guifang Dong
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Lead halide perovskites hold immense promise for optoelectronic applications but still suffer from instability caused by defects. The defects are mainly generated from the film fabrication processes and halide ion migration during long-term storage. Here, a synergistic doping strategy is proposed to enhance the stability of perovskites. A novel multi-carbonyl conductive polymer, poly(benzodifurandione) (PBFDO), is incorporated into the precursor solution to effectively passivate the unoccupied Pb2+ defects in perovskite films and promote the continuous growth of perovskites. An organic iodide, thiophene-2-ethylammonium iodide (TEAI), is doped in the transport layer to inhibit the halide ion migration and enhance the stability of perovskites synergistically. Self-powered photodetectors are constructed with improved stability, maintaining ≈90% of their initial photocurrents after being stored for ≈87 days in a humid atmosphere with 60% relative humidity. The optimized photodetectors show a high detectivity of 8.1 × 1012 Jones at 680 nm wavelength, wide linear dynamic range of 121.9 dB, and fast response with a rise/fall time of 1.92/1.17 µs. A reflection-mode perovskite photoplethysmography testing system is developed, achieving high heart rate testing capabilities. This work suggests the great potential of perovskite photodetectors for noninvasive medical monitoring applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202406568-sup-0001-SuppMat.docx11.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Q. Jiang, J. Tong, R. A. Scheidt, X. Wang, A. E. Louks, Y. Xian, R. Tirawat, A. F. Palmstrom, M. P. Hautzinger, S. P. Harvey, S. Johnston, L. T. Schelhas, B. W. Larson, E. L. Warren, M. C. Beard, J. J. Berry, Y. Yan, K. Zhu, Science 2022, 378, 1295; b) J. Zhou, L. Tan, Y. Liu, H. Li, X. Liu, M. Li, S. Wang, Y. Zhang, C. Jiang, R. Hua, W. Tress, S. Meloni, C. Yi, Joule 2024, 8, 1691; c) B. Guo, R. Lai, S. Jiang, L. Zhou, Z. Ren, Y. Lian, P. Li, X. Cao, S. Xing, Y. Wang, W. Li, C. Zou, M. Chen, Z. Hong, C. Li, B. Zhao, D. Di, Nat. Photonics. 2022, 16, 637; d) J. Wang, S. Luo, Y. Lin, Y. Chen, Y. Deng, Z. Li, K. Meng, G. Chen, T. Huang, S. Xiao, H. Huang, C. Zhou, L. Ding, J. He, J. Huang, Y. Yuan, Nat. Commun. 2020, 11, 582.
- 2a) G. Li, Y. Wang, L. Huang, W. Sun, ACS Appl. Electron. 2022, 4, 1485; b) B. Sun, A. M. Najarian, L. K. Sagar, M. Biondi, M. J. Choi, X. Li, L. Levina, S. W. Baek, C. Zheng, S. Lee, A. R. Kirmani, R. Sabatini, J. Abed, M. Liu, M. Vafaie, P. Li, L. J. Richter, O. Voznyy, M. Chekini, Z. H. Lu, F. P. Garcia de Arquer, E. H. Sargent, Adv. Mater. 2022, 34, 2203039; c) M. Xia, X. Sun, F. Ye, M. Liao, J. Liu, S. Liu, D. Wu, Y. Xu, X. Zhang, K. H. Xue, X. Miao, J. Tang, G. Niu, Adv. Mater. 2024, 36, 2313663.
- 3C. Perumal Veeramalai, S. Feng, X. Zhang, S. V. N. Pammi, V. Pecunia, C. Li, Photonics Res. 2021, 9, 968.
- 4a) S. Wang, Z. Zhang, Z. Tang, C. Su, W. Huang, Y. Li, G. Xing, Nano Energy 2021, 82, 105712; b) Y. Li, Z. Li, F. Liu, J. Wei, Surf. Innov. 2022, 10, 3.
- 5a) W. Zhu, S. Wang, X. Zhang, A. Wang, C. Wu, F. Hao, Small 2022, 18, e2105783; b) W. J. Yin, T. Shi, Y. Yan, Adv. Mater. 2014, 26, 569; c) H. Zhu, S. Teale, M. N. Lintangpradipto, S. Mahesh, B. Chen, M. D. McGehee, E. H. Sargent, O. M. Bakr, Nat. Rev. Mater. 2023, 8, 569.
- 6a) L. K. Ono, S. F. Liu, Y. Qi, Angew. Chem., Int. Ed. 2020, 59, 6676; b) M. Jung, S. G. Ji, G. Kim, S. I. Seok, Chem. Soc. Rev. 2019, 48, 2011. c) X. Cao, L. Zhi, Y. Jia, Y. Li, K. Zhao, X. Cui, L. Ci, D. Zhuang, J. Wei, ACS Appl. Mater. Interfaces 2019, 11, 7639; d) A. K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 2019, 119, 3036; e) H. Gao, K. Xiao, R. Lin, S. Zhao, W. Wang, S. Dayneko, C. Duan, C. Ji, H. Sun, A. D. Bui, C. Liu, J. Wen, W. Kong, H. Luo, X. Zheng, Z. Liu, H. Nguyen, J. Xie, L. Li, M. I. Saidaminov, H. Tan, Science 2024, 383, 855.
- 7D.-K. Lee, N.-G. Park, Appl. Phys. Rev 2023, 10, 011308.
- 8a) Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, Q. Zhao, Nat. Commun. 2016, 7, 10228; b) S. You, H. Zeng, Y. Liu, B. Han, M. Li, L. Li, X. Zheng, R. Guo, L. Luo, Z. Li, C. Zhang, R. Liu, Y. Zhao, S. Zhang, Q. Peng, T. Wang, Q. Chen, F. T. Eickemeyer, B. Carlsen, S. M. Zakeeruddin, L. Mai, Y. Rong, M. Gratzel, X. Li, Science 2023, 379, 288.
- 9a) J. Li, Q. Dong, N. Li, L. Wang, Adv. Energy Mater. 2017, 7, 1602922; b) Y. Zhong, M. Hufnagel, M. Thelakkat, C. Li, S. Huettner, Adv. Funct. Mater. 2020, 30, 1908920; c) D. W. deQuilettes, J. J. Yoo, R. Brenes, F. U. Kosasih, M. Laitz, B. D. Dou, D. J. Graham, K. Ho, Y. Shi, S. S. Shin, C. Ducati, M. G. Bawendi, V. Bulović, Nat. Energy 2024, 9, 762; d) S. M. Park, M. Wei, J. Xu, H. R. Atapattu, F. T. Eickemeyer, K. Darabi, L. Grater, Y. Yang, C. Liu, S. Teale, B. Chen, H. Chen, T. Wang, L. Zeng, A. Maxwell, Z. Wang, K. R. Rao, Z. Cai, S. M. Zakeeruddin, J. T. Pham, C. M. Risko, A. Amassian, M. G. Kanatzidis, K. R. Graham, M. Grätzel, E. H. Sargent, Science 2023, 381, 209.
- 10R. Saraf, V. Maheshwari, ACS Appl. Mater. Interfaces 2018, 10, 21066.
- 11a) H. Tang, Y. Liang, C. Liu, Z. Hu, Y. Deng, H. Guo, Z. Yu, A. Song, H. Zhao, D. Zhao, Y. Zhang, X. Guo, J. Pei, Y. Ma, Y. Cao, F. Huang, Nature 2022, 611, 271; b) H. Tang, H. Cai, H. Zhao, Z. Liu, R. Tan, F. Huang, CCS Chem. 2023, 5, 2534.
- 12a) S. Tan, T. Huang, I. Yavuz, R. Wang, M. H. Weber, Y. Zhao, M. Abdelsamie, M. E. Liao, H. C. Wang, K. Huynh, K. H. Wei, J. Xue, F. Babbe, M. S. Goorsky, J. W. Lee, C. M. Sutter-Fella, Y. Yang, J. Am. Chem. Soc. 2021, 143, 6781; b) D. Yu, M. Pan, G. Liu, X. Jiang, X. Wen, W. Li, S. Chen, W. Zhou, H. Wang, Y. Lu, M. Ma, Z. Zang, P. Cheng, Q. Ji, F. Zheng, Z. Ning, Nat. Energy 2024, 9, 298; c) M. Yuan, H. Ma, Q. Dong, X. Wang, L. Zhang, Y. Yin, Z. Ying, J. Guo, W. Shang, J. Zhang, Y. Shi, Nano Energy 2024, 121, 109192.
- 13T. Yang, L. Gao, J. Lu, C. Ma, Y. Du, P. Wang, Z. Ding, S. Wang, P. Xu, D. Liu, H. Li, X. Chang, J. Fang, W. Tian, Y. Yang, S. F. Liu, K. Zhao, Nat. Commun. 2023, 14, 839.
- 14J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf, W. Weigand, S. Manzoor, M. van Hest, J. J. Berry, J. M. Luther, Z. C. Holman, M. D. McGehee, Science 2020, 367, 1097.
- 15B. Chen, S. W. Baek, Y. Hou, E. Aydin, M. De Bastiani, B. Scheffel, A. Proppe, Z. Huang, M. Wei, Y. K. Wang, E. H. Jung, T. G. Allen, E. Van Kerschaver, F. P. Garcia de Arquer, M. I. Saidaminov, S. Hoogland, S. De Wolf, E. H. Sargent, Nat. Commun. 2020, 11, 1257.
- 16a) X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102; b) X. Luo, W. Xu, G. Zheng, S. Tammireddy, Q. Wei, M. Karlsson, Z. Zhang, K. Ji, S. Kahmann, C. Yin, Y. Zou, Z. Zhang, H. Chen, L. A. B. Marçal, H. Zhao, D. Ma, D. Zhang, Y. Lu, M. Li, C. Deibel, S. D. Stranks, L. Duan, J. Wallentin, W. Huang, F. Gao, Matter 2024, 7, 1054.
- 17a) L. Min, W. Tian, F. Cao, J. Guo, L. Li, Adv. Mater. 2021, 33, 2101714; b) J. Chen, H. Xiang, J. Wang, R. Wang, Y. Li, Q. Shan, X. Xu, Y. Dong, C. Wei, H. Zeng, ACS Nano 2021, 15, 17150.
- 18W. Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang, Y. Deng, H. Lu, Y. Liu, T. Li, Z. Yang, A. Gruverman, J. Huang, Nat. Commun. 2018, 9, 1625.
- 19K.-C. Hsiao, M.-H. Jao, K.-Y. Tian, T.-H. Lin, D.-P. Tran, H.-C. Liao, C.-H. Hou, J.-J. Shyue, M.-C. Wu, W.-F. Su, Sol. RRL 2020, 4, 2000197.
- 20Y. Yun, G. S. Han, G. N. Park, J. Kim, J. Park, D. Vidyasagar, J. Jung, W. C. Choi, Y. J. Choi, K. Heo, J. Kang, J. S. Park, H. S. Jung, S. Lee, Adv. Mater. 2022, 34, 2206932.
- 21N. R. Al Amin, C. C. Lee, Y. C. Huang, C. J. Shih, R. Estrada, S. Biring, M. H. Kuo, C. F. Li, Y. C. Huang, S. W. Liu, ACS Appl. Mater. Interfaces 2023, 15, 21284.
- 22J. Ding, W. Gao, L. Gao, K. Lu, Y. Liu, J. L. Sun, Q. Yan, J. Phys. Chem. Lett. 2022, 13, 7831.
- 23a) A. A. Ensafi, H. Karimi-Maleh, M. Ghiaci, M. Arshadi, J. Mater. Chem. 2011, 21, 15022; b) T. Tamura, Biomed. Eng. Lett. 2019, 9, 21.
- 24G. Simone, D. Tordera, E. Delvitto, B. Peeters, A. J. J. M. van Breemen, S. C. J. Meskers, R. A. J. Janssen, G. H. Gelinck, Adv. Opt. Mater. 2020, 8, 1901989.