Disintegration of Thin Liquid Metal Films Engendered by Aluminum Corrosion
Wangyan Wu
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorGuangyu Chai
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Wei Luo
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected]
Search for more papers by this authorWangyan Wu
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorGuangyu Chai
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Wei Luo
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Liquid metals (LMs) illustrate a fantastic future. Thus, great endeavors are made to earn a comprehensive understanding of this fluid and carve it into a niche. Herein, by revisiting the combination of Ga-based LMs and aluminum (Al), a new phenomenon, namely the disintegration of LM films on encountering water, is identified. Deviating from previous investigations where the LM generally took the form of bulk puddles, the LM-Al slurry is spread as thin films here. In this case, Al debris embedded in the LM matrix hydrolyzes and therefore can exert disjoining pressure strong enough to split the thin film into countless tiny LM droplets. Based on this mechanism, transient circuits independent of substrate decomposition are realized. Furthermore, taking advantage of the portfolio strategy of pure LM and the LM-Al slurry, novel concepts of flood warning and information storage and encryption are demonstrated. Integrating these functions all in one demonstrates the versatility of the disintegration of thin LM films engendered by Al corrosion, which provides a scientific insight into ephemeral art and makes the Ga─Al combination more illuminating.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202406363-sup-0001-SuppMat.pdf5.5 MB | Supporting Information |
smll202406363-sup-0002-MovieS1.mp48.6 MB | Supplemental Movie 1 |
smll202406363-sup-0003-MovieS2.mp43.4 MB | Supplemental Movie 2 |
smll202406363-sup-0004-MovieS3.mp48 MB | Supplemental Movie 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Woo, Proc. Natl. Acad. Sci. USA 2020, 117, 5088.
- 2S.-Y. Tang, C. Tabor, K. Kalantar-Zadeh, M. D. Dickey, Annu. Rev. Mater. Res. 2021, 51, 381.
- 3S. A. Idrus-Saidi, J. Tang, S. Lambie, J. Han, M. Mayyas, M. B. Ghasemian, F.-M. Allioux, S. Cai, P. Koshy, P. Mostaghimi, K. G. Steenbergen, A. S. Barnard, T. Daeneke, N. Gaston, K. Kalantar-Zadeh, Science 2022, 378, 1118.
- 4Y. Lin, X. Gao, J. Yue, Y. Fang, J. Shi, L. Meng, C. Clayton, X.-X. Zhang, F. Shi, J. Deng, S. Chen, Y. Jiang, F. Marin, J. Hu, H.-M. Tsai, Q. Tu, E. W. Roth, R. Bleher, X. Chen, P. Griffin, Z. Cai, A. Prominski, T. W. Odom, B. Tian, Nat. Chem. 2023, 15, 119.
- 5P. Yang, X. Li, X. Yang, G. Li, Z. Hu, L. Huang, Y. Wu, Adv. Funct. Mater. 2022, 32, 2205167.
- 6F. F. Yun, Z. Yu, Y. He, L. Jiang, Z. Wang, H. Gu, X. Wang, Natl. Sci. Rev. 2019, 7, 366.
- 7H. Ren, H. Jin, J. Shu, J. Xie, E. Wang, D.-A. Ge, S.-Y. Tang, X. Li, W. Li, S. Zhang, Mater. Horiz. 2021, 8, 3063.
- 8X. Li, L. Cao, B. Xiao, F. Li, J. Yang, J. Hu, T. Cole, Y. Zhang, M. Zhang, J. Zheng, S. Zhang, W. Li, L. Sun, X. Chen, S.-Y. Tang, Adv. Sci. 2022, 9, 2105289.
- 9G. Li, M. Zhang, S. Liu, M. Yuan, J. Wu, M. Yu, L. Teng, Z. Xu, J. Guo, G. Li, Z. Liu, X. Ma, Nat. Electron. 2023, 6, 154.
- 10S. Chen, H.-Z. Wang, R.-Q. Zhao, W. Rao, J. Liu, Matter 2020, 2, 1446.
- 11H. Liu, Y. Xin, H. K. Bisoyi, Y. Peng, J. Zhang, Q. Li, Adv. Mater. 2021, 33, 2104634.
- 12S. Liu, D. S. Shah, R. Kramer-Bottiglio, Nat. Mater. 2021, 20, 851.
- 13X. Wang, W. Yao, R. Guo, X. Yang, J. Tang, J. Zhang, W. Gao, V. Timchenko, J. Liu, Adv. Healthcare Mater. 2018, 7, 1800318.
- 14B. Ma, C. Xu, J. Chi, J. Chen, C. Zhao, H. Liu, Adv. Funct. Mater. 2019, 29, 1901370.
- 15C. Wang, Y. Gong, B. V. Cunning, S. Lee, Q. Le, S. R. Joshi, O. Buyukcakir, H. Zhang, W. K. Seong, M. Huang, M. Wang, J. Lee, G.-H. Kim, R. S. Ruoff, Sci. Adv. 2021, 7, eabe3767.
- 16H. Wang, S. Chen, H. Li, X. Chen, J. Cheng, Y. Shao, C. Zhang, J. Zhang, L. Fan, H. Chang, R. Guo, X. Wang, N. Li, L. Hu, Y. Wei, J. Liu, Adv. Funct. Mater. 2021, 31, 2100274.
- 17Y. Wang, J. Guo, W. Xiao, K. Sun, H. Wang, L. Hu, Adv. Mater. Interfaces 2021, 8, 2100884.
- 18D. Wu, D. Liu, X. Tian, C. Lei, X. Chen, S. Zhang, F. Chen, K. Wu, Q. Fu, Small Meth. 2022, 6, 2200246.
- 19J. J. Cuomo, J. M. Woodall, (International Business Machines Corporation), US 4358291, 1982.
- 20J. M. Woodall, J. T. Ziebarth, C. R. Allen, D. M. Sherman, J. Jeon, G. Choi, in Materials Innovations in an Emerging Hydrogen Economy (Eds: G. G. Wicks, J. Simon), 2009, https://doi.org/10.1002/9780470483428.ch13.
- 21W. Gao, A. Pei, J. Wang, ACS Nano 2012, 6, 8432.
- 22L. Sheng, Z. He, Y. Yao, J. Liu, Small 2015, 11, 5253.
- 23B. Yuan, S. Tan, Y. Zhou, J. Liu, Sci. Bull. 2015, 60, 1203.
- 24B. Yuan, L. Wang, X. Yang, Y. Ding, S. Tan, L. Yi, Z. He, J. Liu, Adv. Sci. 2016, 3, 1600212.
- 25R. Tanaka, P.-K. Choi, H. Koizumi, S.-i. Hyodo, Mater. Trans. 2001, 42, 138.
- 26V. R. Feig, E. Remlova, B. Muller, J. L. P. Kuosmanen, N. Lal, A. Ginzburg, K. Nan, A. Patel, A. M. Jebran, M. P. Bantwal, N. Fabian, K. Ishida, J. Jenkins, J.-G. Rosenboom, S. Park, W. Madani, A. Hayward, G. Traverso, Adv. Mater. 2023, 35, 2208227.
- 27J. L. Murray, Bull. Alloy Phase Diagrams 1984, 5, 21.
10.1007/BF02868714 Google Scholar
- 28U. Daalkhaijav, O. D. Yirmibesoglu, S. Walker, Y. Mengüç, Adv. Mater. Technol. 2018, 3, 1700351.
- 29W. Kong, Z. Wang, M. Wang, K. C. Manning, A. Uppal, M. D. Green, R. Y. Wang, K. Rykaczewski, Adv. Mater. 2019, 31, 1904309.
- 30M. A. Rahim, F. Centurion, J. Han, R. Abbasi, M. Mayyas, J. Sun, M. J. Christoe, D. Esrafilzadeh, F.-M. Allioux, M. B. Ghasemian, J. Yang, J. Tang, T. Daeneke, S. Mettu, J. Zhang, M. H. Uddin, R. Jalili, K. Kalantar-Zadeh, Adv. Funct. Mater. 2021, 31, 2007336.
- 31P. Wu, Z. Wang, X. Yao, J. Fu, Y. He, Mater. Horiz. 2021, 8, 2006.
- 32M. R. Khan, C. Trlica, J. H. So, M. Valeri, M. D. Dickey, ACS Appl. Mater. Interfaces 2014, 6, 22467.
- 33M. R. Khan, J. Bell, M. D. Dickey, Adv. Mater. Interfaces 2016, 3, 1600546.
- 34W. Lee, H. Kim, I. Kang, H. Park, J. Jung, H. Lee, H. Park, J. S. Park, J. M. Yuk, S. Ryu, J.-W. Jeong, J. Kang, Science 2022, 378, 637.
- 35S. Liu, Z. Xu, G. Li, Z. Li, Z. Ye, Z. Xu, W. Chen, D. Jin, X. Ma, Adv. Sci. 2023, 10, 2301292.
- 36F. Li, W. Lei, Y. Wang, X. Lu, S. Li, F. Xu, Z. He, J. Liu, H. Yang, Y. Wu, J. Shang, Y. Liu, R.-W. Li, npj Flex. Electron. 2023, 7, 31.
- 37S.-Y. Tang, I. D. Joshipura, Y. Lin, K. Kalantar-Zadeh, A. Mitchell, K. Khoshmanesh, M. D. Dickey, Adv. Mater. 2016, 28, 604.
- 38Y. Yu, F. Liu, R. Zhang, J. Liu, Adv. Mater. Technol. 2017, 2, 1700173.
- 39S. Y. Kim, S. Liu, S. Sohn, J. Jacobs, M. D. Shattuck, C. S. O'Hern, J. Schroers, M. Loewenberg, R. Kramer-Bottiglio, Nat. Commun. 2021, 12, 3768.
- 40X. Qi, L. Yu, Y. Liu, L. Chen, X. Li, Adv. Funct. Mater. 2024, 34, 2313960.
- 41S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, J. A. Rogers, Science 2012, 337, 1640.
- 42S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J. G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R. C. Webb, C. H. Lee, S. Chung, D. S. Wie, A. D. Gujar, B. Vemulapalli, A. H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S. H. Lee, P. V. Braun, W. Z. Ray, J. A. Rogers, Nature 2016, 530, 71.
- 43P. Lobner, The Mysterious Case of the Vanishing Electronics, and More, https://lynceans.org/tag/vanishing-programmable-resources/ (accessed: March 2024).
- 44L. Teng, S. Ye, S. Handschuh-Wang, X. Zhou, T. Gan, X. Zhou, Adv. Funct. Mater. 2019, 29, 1808739.
- 45H. Song, H. Wang, T. Gan, S. Shi, X. Zhou, Y. Zhang, S. Handschuh-Wang, Adv. Mater. Technol. 2024, 9, 2301483.
- 46D. Wang, Y. Liu, G. Li, C. Qin, L. Huang, Y. Wu, Adv. Funct. Mater. 2021, 31, 2106740.