Lanternarene-Based Self-Sorting Double-Network Hydrogels for Flexible Strain Sensors
Zi-Qi Gao
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorChuan-Hong Liu
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorShuang-Long Zhang
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorCorresponding Author
Sheng-Hua Li
Tianjin R&D Biotechnology Co., Ltd., Tianjin, 300456 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLi-Wei Gao
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorRui-Lin Chai
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorTuo-Yu Zhou
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorXu-Juan Ma
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorXin Li
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 P. R. China
Search for more papers by this authorShibo Li
Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300382 P. R. China
Search for more papers by this authorJin Zhao
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorCorresponding Author
Qian Zhao
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZi-Qi Gao
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorChuan-Hong Liu
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorShuang-Long Zhang
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorCorresponding Author
Sheng-Hua Li
Tianjin R&D Biotechnology Co., Ltd., Tianjin, 300456 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLi-Wei Gao
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorRui-Lin Chai
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorTuo-Yu Zhou
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorXu-Juan Ma
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorXin Li
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 P. R. China
Search for more papers by this authorShibo Li
Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300382 P. R. China
Search for more papers by this authorJin Zhao
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
Search for more papers by this authorCorresponding Author
Qian Zhao
College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m−1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m−3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202404231-sup-0001-SuppMat.pdf4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Luo, M. R. Abidian, J.-H. Ahn, D. Akinwande, A. M. Andrews, M. Antonietti, Z. Bao, M. Berggren, C. A. Berkey, C. J. Bettinger, J. Chen, P. Chen, W. Cheng, X.u Cheng, S.-J. Choi, A. Chortos, C. Dagdeviren, R. H. Dauskardt, C.-A. Di, M. D. Dickey, X. Duan, A. Facchetti, Z. Fan, Y. Fang, J. Feng, X. Feng, H. Gao, W. Gao, X. Gong, C. F. Guo, et al., ACS Nano 2023, 17, 5211.
- 2Y. Zhang, Y. Tan, J. Lao, H. Gao, J. Yu, ACS Nano 2023, 17, 9681.
- 3Q. Zheng, J.-h. Lee, X. Shen, X. Chen, J.-K. Kim, Mater. Today 2020, 36, 158.
- 4N. Qaiser, F. Al-Modaf, S. M. Khan, S. F. Shaikh, N. El-Atab, M. M. Hussain, Adv. Funct. Mater. 2021, 31, 2103375.
- 5Q. H. He, Y. Cheng, Y. J. Deng, F. Wen, Y. K. Lai, H. Q. Li, Adv. Funct. Mater. 2024, 34, 2308974.
- 6X. Pu, M. M. Liu, X. Y. Chen, J. M. Sun, C. H. Du, Y. Zhang, J. Y. Zhai, W. G. Hu, Z. L. Wang, Sci. Adv. 2017, 3, 1700015.
- 7Y. Dobashi, D. Yao, Y. Petel, T. N. Nguyen, M. S. Sarwar, Y. Thabet, C. L. W. Ng, E. Scabeni Glitz, G. T. M. Nguyen, C. Plesse, F. Vidal, C. A. Michal, J. D. W. Madden, Science 2022, 376, 502.
- 8W. W. Niu, Q. Tian, Z. Y. Liu, X. K. Liu, Adv. Mater. 2023, 35, 2304157.
- 9X. Y. Liang, G. D. Chen, S. T. Lin, J. J. Zhang, L. Wang, P. Zhang, Y. Lan, J. Liu, Adv. Mater. 2022, 34, 2107106.
- 10H. Yuk, S. T. Lin, C. Ma, M. Takaffoli, N. X. Fang, X. H. Zhao, Nat. Commun. 2017, 8, 14230.
- 11Q. L. Zhu, C. Du, Y. H. Dai, M. Daab, M. Matejdes, J. Breu, W. Hong, Q. Zheng, Z. L. Wu, Nat. Commun. 2020, 11, 5166.
- 12J. T. Qu, G. M. Cui, Z. K. Li, S. T. Fang, X. R. Zhang, A. Liu, M. Y. Han, H. D. Liu, X. Q. Wang, X. H. Wang, Adv. Funct. Mater. 2024, 2401311.
10.1002/adfm.202401311 Google Scholar
- 13Y. Hou, Y. Li, Y. Li, D. Li, T. Guo, X. Deng, H. Zhang, C. Xie, X. Lu, ACS Nano 2023, 17, 2745.
- 14J. Zhang, L. Wang, Y. Xue, I. M. Lei, X. Chen, P. Zhang, C. Cai, X. Liang, Y. Lu, J. Liu, Adv. Mater. 2022, 35, 2209324.
- 15Z. W. Wang, H. Wei, Y. J. Huang, Y. Wei, J. Chen, Chem. Soc. Rev. 2023, 52, 2992.
- 16D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, H. Yu, Adv. Mater. 2020, 33, 2000619.
- 17Y. Zhao, K. Q. Jin, J. D. Li, K. K. Sheng, W. H. Huang, Y. L. Liu, Adv. Mater. 2023, 2305917.
- 18Y. Y. Zhao, Y. Ohm, J. H. Liao, Y. C. Luo, H. Y. Cheng, P. Won, P. Roberts, M. R. Carneiro, M. F. Islam, J. H. Ahn, L. M. Walker, C. Majidi, Nat. Electron. 2023, 6, 206.
- 19C. C. Kim, H. H. Lee, K. H. Oh, J. Y. Sun, Science 2016, 353, 682.
- 20W. C. Zhao, H. F. Zhou, W. K. Li, M. L. Chen, M. Zhou, L. Zhao, Nano-Micro Lett. 2024, 16, 99.
- 21L. Wang, G. Gao, Y. Zhou, T. Xu, J. Chen, R. Wang, R. Zhang, J. Fu, ACS Appl. Mater. Interfaces 2018, 11, 3506.
- 22F. N. Mo, Z. Chen, G. J. Liang, D. H. Wang, Y. W. Zhao, H. F. Li, B. B. Dong, C. Y. Zhi, Adv. Energy Mater. 2020, 10, 2000035.
- 23J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
- 24X. Li, J. P. Gong, Nat. Rev. Mater. 2024, 9, 00672.
10.1038/s41578-024-00672-3 Google Scholar
- 25N. Roy, V. Schädler, J.-M. Lehn, Acc. Chem. Res. 2024, 57, 349.
- 26E. A. Appel, F. Biedermann, U. Rauwald, S. T. Jones, J. M. Zayed, O. A. Scherman, J. Am. Chem. Soc. 2010, 132, 14251.
- 27X. Ma, Y. L. Zhao, Chem. Rev. 2015, 115, 7794.
- 28B. L. Guo, Y. P. Liang, R. A. Dong, Nat. Protoc. 2023, 18, 3322.
- 29M. L. Jin, S. Park, Y. Lee, J.i H. Lee, J. Chung, J. S. Kim, J.-S. Kim, S.o Y. Kim, E. Jee, D. W. Kim, J. W. Chung, S. G. Lee, D. Choi, H.-T. Jung, D. H. Kim, Adv. Mater. 2017, 29, 1605973.
- 30Z. X. Liu, W. J. Lin, Y. Liu, Acc. Chem. Res. 2022, 55, 3417.
- 31L. Voorhaar, R. Hoogenboom, Chem. Soc. Rev. 2016, 45, 4013.
- 32D. Y. Xia, P. Wang, X. F. Ji, N. M. Khashab, J. L. Sessler, F. H. Huang, Chem. Rev. 2020, 120, 6070.
- 33X. R. Xiong, Y. H. Chen, Z. X. Wang, H. Liu, M. Q. Le, C. H. Lin, G. Wu, L. Wang, X. T. Shi, Y. G. Jia, Y. L. Zhao, Nat. Commun. 2023, 14, 1331.
- 34W. Li, X. Wang, Z. Liu, X. Zou, Z. Shen, D. Liu, L. Li, Y. Guo, F. Yan, Nat. Mater. 2023, 23, 131.
- 35J. F. Xiong, X. W. Wang, L. L. Li, Q. N. Li, S. J. Zheng, Z. Y. Liu, W. Z. Li, F. Yan, Angew. Chem., Int. Ed. 2024, 63, 202316375.
- 36T. Y. Qiu, T. H. Wang, W. S. Tang, Y. Q. Li, Y. G. Li, X. Y. Lang, Q. Jiang, H. Q. Tan, Angew. Chem., Int. Ed. 2023, 62, 202312020.
- 37S. Sultan, H. N. Abdelhamid, X. Zou, A. P. Mathew, Adv. Funct. Mater. 2018, 29, 1805372.
- 38S. E. Neumann, J. Kwon, C. Gropp, L.e Ma, R. Giovine, T. Ma, N. Hanikel, K. Wang, T. Chen, S. Jagani, R. O. Ritchie, T. Xu, O. M. Yaghi, Science 2024, 383, 1337.
- 39S. H. Li, B. B. Li, X. L. Zhao, H. Wu, R. L. Chai, G. Y. Li, D. Zhu, G. R. He, H. F. Zhang, K. K. Xie, B. W. Cheng, Q. Zhao, Small 2023, 19, 2301934.
- 40M. M. Safont-Sempere, G. Fernández, F. Würthner, Chem. Rev. 2011, 111, 5784.
- 41D. Serrano-Molina, C. Montoro-García, M. J. Mayoral, A. de Juan, D. González-Rodríguez, J. Am. Chem. Soc. 2022, 144, 5450.
- 42H. C. Yu, X. P. Hao, C. A. W. Zhang, S. Y. Zheng, M. Du, S. M. Liang, Z. L. Wu, Q. Zheng, Small 2021, 17, 2103836.
- 43T. C. Shyu, P. F. Damasceno, P. M. Dodd, A. Lamoureux, L. Z. Xu, M. Shlian, M. Shtein, S. C. Glotzer, N. A. Kotov, Nat. Mater. 2015, 14, 785.
- 44F. L. Zhuo, J. Zhou, Y. Liu, J. F. Xie, H. Chen, X. Z. Wang, J. K. Luo, Y. Q. Fu, A. Elmarakbi, H. G. Duan, Adv. Funct. Mater. 2023, 33, 2308487.
- 45J. Cao, J. Li, Y. Chen, L. Zhang, J. Zhou, Adv. Funct. Mater. 2018, 28, 1800739.
- 46D. Shimoyama, T. Ikeda, R. Sekiya, T. Haino, J. Org. Chem. 2017, 82, 13220.
- 47D. Shimoyama, R. Sekiya, H. Kudo, T. Haino, Org. Lett. 2019, 22, 352.
- 48Q. Q. Guan, H. L. Zheng, J. Zhai, C. Zhao, X. K. Zheng, X. M. Tang, W. Chen, Y. J. Sun, Ind. Eng. Chem. Res. 2014, 53, 5624.
- 49T. Peter, V. Willem, N. R. David, Tetrahedron 1996, 52, 2663.