Strong and Robust Core–Shell Ceramic Fibers Composed of Highly Compacted Nanoparticles for Multifunctional Electronic Skin
Yunfeng Hu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorZhi Cheng
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorJie Gao
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorYongping Liu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorPeng Yan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorQi Ding
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Yuchi Fan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected]
Search for more papers by this authorWan Jiang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorYunfeng Hu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorZhi Cheng
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorJie Gao
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorYongping Liu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorPeng Yan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorQi Ding
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Yuchi Fan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected]
Search for more papers by this authorWan Jiang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorAbstract
Functional fibers composed of textiles are considered a promising platform for constructing electronic skin (e-skin). However, developing robust electronic fibers with integrated multiple functions remains a formidable task especially when a complex service environment is concerned. In this work, a continuous and controllable strategy is demonstrated to prepare e-skin-oriented ceramic fibers via coaxial wet spinning followed by cold isostatic pressing. The resulting core–shell structured fiber with tightly compacted Al-doped ZnO nanoparticles in the core and highly ordered aramid nanofibers in the shell exhibit excellent tensile strength (316 MPa) with ultra-high elongation (33%). Benefiting from the susceptible contacts between conducting ceramic nanoparticles, the ceramic fiber shows both ultrahigh sensitivity (gauge factor = 2141) as a strain sensor and a broad working range up to 70 °C as a temperature sensor. Furthermore, the tunable core–shell structure of the fiber enables the optimization of impedance matching and attenuation of electromagnetic waves for the corresponding textile, resulting in a minimum reflection loss of −39.1 dB and an effective absorption bandwidth covering the whole X-band. Therefore, the versatile core–shell ceramic fiber-derived textile can serve as a stealth e-skin for monitoring the motion and temperature of robots under harsh conditions.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202404080-sup-0001-SuppMat.docx2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song, Z. Guo, N. Naik, Adv. Funct. Mater. 2021, 31, 2104686.
- 2C. Lu, X. Wang, Y. Shen, S. Xu, C. Huang, C. Wang, H. Xie, J. Wang, Q. Yong, F. Chu, Adv. Funct. Mater. 2023, 34, 2311502.
- 3J. Xue, D. Liu, D. Li, T. Hong, C. Li, Z. Zhu, Y. Sun, X. Gao, L. Guo, X. Shen, P. Ma, Q. Zheng, Adv. Mater. 2024, https://doi.org/10.1002/adma.202312596.
10.1002/adma.202312596 Google Scholar
- 4B. Li, H. Tian, L. Li, W. Liu, J. Liu, Z. Zeng, N. Wu, Adv. Funct. Mater. 2024, 34, 2314653.
- 5Y. Zhu, J. Liu, T. Guo, J. J. Wang, X. Tang, V. Nicolosi, ACS Nano 2021, 15, 1465.
- 6Y. Fu, S. Kang, G. Xiang, C. Su, C. Gao, L. Tan, H. Gu, S. Wang, Z. Zheng, S. Dai, C. Lin, Adv. Mater. 2024, 36, 2313101.
- 7X. Gao, F. Zhou, M. Li, X. Wang, S. Chen, J. Yu, ACS Appl. Mater. Interfaces 2021, 13, 52811.
- 8F. Wu, S. Qiang, X. Zhang, F. Wang, X. Yin, L. Liu, J. Yu, Y. T. Liu, B. Ding, Adv. Funct. Mater. 2022, 32, 2207130.
- 9J. Guo, B. He, Y. Han, H. Liu, J. Han, X. Ma, J. Wang, W. Gao, W. Lu, Nano Lett. 2024, 24, 1114.
- 10C. Liu, Y. Liao, W. Jiao, X. Zhang, N. Wang, J. Yu, Y.-T. Liu, B. Ding, Adv. Mater. 2023, 35, 2304401.
- 11H. Wang, L. Cheng, J. Yu, Y. Si, B. Ding, Nat. Commun. 2024, 15, 336.
- 12X. Lv, Y. Liu, J. Yu, Z. Li, B. Ding, Adv. Fiber Mater. 2022, 5, 401.
- 13M. D. Calisir, A. Kilic, Mater. Lett. 2020, 258, 126751.
- 14J. Song, R. Guan, M. Xie, P. Dong, X. Yang, J. Zhang, Chem. Eng. J. 2022, 431, 134343.
- 15H. Wang, X. Zhang, N. Wang, Y. Li, X. Feng, Y. Huang, C. Zhao, Z. Liu, M. Fang, G. Ou, H. Gao, X. Li, H. Wu, Sci. Adv. 2017, 3, 1603170.
- 16L. Song, F. Zhang, Y. Chen, L. Guan, Y. Zhu, M. Chen, H. Wang, B. R. Putra, R. Zhang, B. Fan, Nano-Micro Lett. 2022, 14, 152.
- 17G. Li, M. Zhu, W. Gong, R. Du, A. Eychmüller, T. Li, W. Lv, X. Zhang, Adv. Funct. Mater. 2019, 29, 1900188.
- 18L. Su, H. Wang, M. Niu, S. Dai, Z. Cai, B. Yang, H. Huyan, X. Pan, Sci. Adv. 2020, 6, eaay6689.
- 19L. Su, H. Wang, S. Jia, S. Dai, M. Niu, J. Ren, X. Lu, Z. Cai, D. Lu, M. Li, L. Xu, S. W. Guo, L. Zhuang, K. Peng, ACS Nano 2021, 15, 18354.
- 20L. Su, H. Wang, M. Niu, X. Fan, M. Ma, Z. Shi, S. W. Guo, ACS Nano 2018, 12, 3103.
- 21E. Zhang, W. Zhang, T. Lv, J. Li, J. Dai, F. Zhang, Y. Zhao, J. Yang, W. Li, H. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 20548.
- 22C. Jia, Z. Xu, D. Luo, H. Xiang, M. Zhu, Adv. Fiber Mater. 2022, 4, 573.
- 23Y. Cheng, B. Ma, P. Hu, J. Zhang, D. Hu, J. Wang, Adv. Funct. Mater. 2023, 33, 2309148.
- 24B. J. Ackley, K. L. Martin, T. S. Key, C. M. Clarkson, J. J. Bowen, N. D. Posey, J. F. Ponder Jr, Z. D. Apostolov, M. K. Cinibulk, T. L. Pruyn, M. B. Dickerson, Chem. Rev. 2023, 123, 4188.
- 25O. A. Tafreshi, S. G. Mosanenzadeh, S. Karamikamkar, Z. Saadatnia, C. B. Park, H. E. Naguib, Mater. Today Chem. 2022, 23, 100736.
- 26S. Wang, Y. Chen, D. Pei, X. Zhang, M. Li, D. Xu, C. Li, Chem. Eng. J. 2023, 465, 142939.
- 27R. Zhang, M. Qu, H. Wang, S. Li, Y. Song, P. Tang, Y. Bin, J. Mater. Chem. A 2023, 11, 3616.
- 28X. Zhang, A. Wang, X. Zhou, F. Chen, Q. Fu, Carbon 2020, 165, 340.
- 29K. Wang, Y. Chao, Z. Chen, S. Sayyar, C. Wang, G. Wallace, Chem. Eng. J. 2023, 453, 139920.
- 30L. X. Liu, W. Chen, H. B. Zhang, L. Ye, Z. Wang, Y. Zhang, P. Min, Z. Z. Yu, Nano-Micro Lett. 2022, 14, 111.
- 31M. Yang, H. Lou, X. Kong, R. Pang, D. Zhang, W. Meng, M. Li, X. Huang, S. Zhang, Y. Shang, A. Cao, Small Methods 2023, 7, 2300518.
- 32L. Ye, L.-X. Liu, G. Yin, Y. Liu, Z. Deng, C.-Z. Qi, H.-B. Zhang, Z.-Z. Yu, Mater. Today Phys. 2023, 35, 101100.
- 33Y. Li, X. Zhang, Adv. Funct. Mater. 2021, 32, 2107767.
- 34J. Zhang, S. Uzun, S. Seyedin, P. A. Lynch, B. Akuzum, Z. Wang, S. Qin, M. Alhabeb, C. E. Shuck, W. Lei, E. C. Kumbur, W. Yang, X. Wang, G. Dion, J. M. Razal, Y. Gogotsi, ACS Cent. Sci. 2020, 6, 254.
- 35C. Qiu, K. Zhu, X. Zhou, L. Luo, J. Zeng, R. Huang, A. Lu, X. Liu, F. Chen, L. Zhang, Q. Fu, ACS Sustain. Chem. Eng. 2018, 6, 4056.
- 36Y. Hu, T. Huang, H. Zhang, H. Lin, Y. Zhang, L. Ke, W. Cao, K. Hu, Y. Ding, X. Wang, K. Rui, J. Zhu, W. Huang, ACS Appl. Mater. Interfaces 2021, 13, 23905.
- 37L. Wang, M. Zhang, B. Yang, J. Tan, ACS Appl. Mater. Interfaces 2021, 13, 41933.
- 38J. Huang, J. Li, X. Xu, L. Hua, Z. Lu, ACS Nano 2022, 16, 8161.
- 39C. B. Huang, Y. Yao, V. Montes-García, M. A. Stoeckel, M. Von Holst, A. Ciesielski, P. Samorì, Small 2021, 17, 2007593.
- 40M. Chen, W. Luo, Z. Xu, X. Zhang, B. Xie, G. Wang, M. Han, Nat. Commun. 2019, 10, 4024.
- 41Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie, F. Xu, J. Zhu, W. Huang, Adv. Mater. 2024, 36, 2310613.
- 42F. Chen, S. Yang, J. Wu, J. A. Galaviz Perez, Q. Shen, J. M. Schoenung, E. J. Lavernia, L. Zhang, V. Jayaram, J. Am. Ceram. Soc. 2014, 98, 732.
- 43X. Liao, Q. Liao, Z. Zhang, X. Yan, Q. Liang, Q. Wang, M. Li, Y. Zhang, Adv. Funct. Mater. 2016, 26, 3074.
- 44W. Luo, M. Wang, K. Wang, P. Yan, J. Huang, J. Gao, T. Zhao, Q. Ding, P. Qiu, H. Wang, P. Lu, Y. Fan, W. Jiang, Adv. Sci. 2022, 9, 2104163.
- 45Y. Liu, P. Tuo, F.-Z. Dai, Z. Yu, W. Lai, Q. Ding, P. Yan, J. Gao, Y. Hu, Y. Hu, Y. Fan, W. Jiang, Adv. Mater. 2024, https://doi.org/10.1002/adma.202400059.
10.1002/adma.202400059 Google Scholar
- 46Z. Wu, H. W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Carbohydr. Polym. 2022, 34, 2107538.
- 47S.-H. Kim, S.-Y. Lee, Y. Zhang, S.-J. Park, J. Gu, Adv. Sci. 2023, 10, 2303104.
- 48H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang, L. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 10198.
- 49W. Deng, T. Li, H. Li, R. Niu, A. Dang, Y. Cheng, H. Wu, Carbon 2023, 202, 103.
- 50J. Liu, H. B. Zhang, X. Xie, R. Yang, Z. Liu, Y. Liu, Z. Z. Yu, Small 2018, 14, 1802479.
- 51X. Lan, Y. Li, Z. Wang, Chem. Eng. J. 2020, 397, 125250.
- 52S. Xiao, H. Mei, D. Han, K. G. Dassios, L. Cheng, Carbon 2017, 122, 718.
- 53F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Adv. Funct. Mater. 2018, 28, 1707205.
- 54S. Wang, D. Li, Y. Zhou, L. Jiang, ACS Nano 2020, 14, 8634.
- 55Y. Wang, W. Wang, D. Yu, Appl. Surf. Sci. 2017, 425, 518.
- 56Y. Shi, L. Yu, K. Li, S. Li, Y. Dong, Y. Zhu, Y. Fu, F. Meng, Compos. Sci. Technol. 2020, 197, 108246.
- 57J. Sun, L. Wang, Q. Yang, Y. Shen, X. Zhang, Prog. Org. Coat. 2020, 141, 105552.
- 58W.-L. Song, X.-T. Guan, L.-Z. Fan, Y.-B. Zhao, W.-Q. Cao, C.-Y. Wang, M.-S. Cao, Carbon 2016, 100, 109.