Stable Radicals in Dihydrophenazine Derivatives-Doped Epoxy Resin for High Photothermal Conversion
Ziyu Chen
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYonghao Su
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorQianxin Long
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorZhiyun Zhang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorJianhua Su
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Lifang Guo
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
E-mail: [email protected]
Search for more papers by this authorZiyu Chen
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYonghao Su
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorQianxin Long
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorZhiyun Zhang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorJianhua Su
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Lifang Guo
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Organic radicals exhibit great potential in photothermal applications, however, their innate high reactivity with oxygen renders the preparation of stable organic radicals highly challenging. In this work, a series of co-doped radical polymers ares prepared by doping dihydrophenazine derivatives (DPPs) into the epoxy resin matrix. DPPs can form radical species through the electron transfer process, which are further stabilized by the complex 3D network structure of epoxy resin. Experimental results show that the photothermal conversion efficiency is as high as 79.9%, and the temperature can quickly rise to ≈130 °C within 60 s. Due to the excellent visible light transmittance and mechanical properties of co-doped systems, this study further demonstrates their practical applications in energy-saving solar windows and thermoelectric power generation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403623-sup-0001-SuppMat.docx1.7 MB | Supporting Information |
smll202403623-sup-0002-MovieS1.mp47.2 MB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. S. Fuzil, N. H. Othman, N. H. Alias, F. Marpani, M. H. D. Othman, A. F. Ismail, W. J. Lau, K. Li, T. D. Kusworo, I. Ichinose, M. M. A. Shirazi, Desalination 2021, 517, 115259.
- 2a) R. Xiong, L. Zhong, Y. Song, J. Xu, Y. Xiao, B. Cheng, S. Lei, ACS Mater. Lett. 2023, 5, 1992. b) Y. Ge, Z. Su, L. Wang, C. Wang, P. Cai, S. Lin, Y. Liu, S. Xu, G. Bai, ACS Mater. Lett. 2023, 5, 2576; c) C. Zhao, T. Man, X. Xu, Q. Yang, W. Liu, S. J. Jonas, M. A. Teitell, P.-Y. Chiou, P. S. Weiss, ACS Mater. Lett. 2020, 2, 1475.
- 3a) Q. Gu, Z.-H. Zhao, B. Chan, T. Yan, J.-L. Zuo, D. M. D'Alessandro, C.-H. Li, ACS Mater. Lett. 2023, 5, 603; b) X. Cui, Q. Ruan, X. Zhuo, X. Xia, J. Hu, R. Fu, Y. Li, J. Wang, H. Xu, Chem. Rev. 2023, 123, 6891; c) J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh, H. Dai, J. Am. Chem. Soc. 2011, 133, 6825.
- 4a) M. Imran, C. M. Wehrmann, M. S. Chen, J. Am. Chem. Soc. 2019, 142, 38; b) J. Guo, Y. Yang, C. Dou, Y. Wang, J. Am. Chem. Soc. 2021, 143, 18272; c) T. Luo, Y. Wang, J. Hao, P. A. Chen, Y. Hu, B. Chen, J. Zhang, K. Yang, Z. Zeng, Angew. Chem., Int. Ed. 2022, 62, e202214653.
- 5a) J. C. Theriot, C.-H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave, G. M. Miyake, Science 2016, 352, 1082; b) J.-Q. Qi, W. Suo, J. Liu, S. Sun, L. Jiao, X. Guo, J. Am. Chem. Soc. 2024, 146, 7140.
- 6a) E. P. Tomlinson, M. J. Willmore, X. Zhu, S. W. A. Hilsmier, B. W. Boudouris, ACS Appl. Mater. Interfaces 2015, 7, 18195; b) Y. Wang, Z. Chen, H. Huang, D. Wang, D. Liu, L. Wang, J. Mater. Chem. A 2020, 8, 24675.
- 7a) Z. Wang, J. Zhou, Y. Zhang, W. Zhu, Y. Li, Angew. Chem., Int. Ed. 2022, 61, e202113653; b) H. Gao, X. Zhi, F. Wu, Y. Zhao, F. Cai, P. Li, Z. Shen, Angew. Chem., Int. Ed. 2023, 62, e202309208; c) Y. Gao, Y. Liu, X. Li, H. Wang, Y. Yang, Y. Luo, Y. Wan, C.-s. Lee, S. Li, X.-H. Zhang, Nano-Micro Lett. 2023, 16, 21; d) Q. Song, M. Xu, B. Zhang, M. He, X. Guo, J. Nie, Y. Xing, X. Liang, Y. Chang, Adv. Healthcare Mater. 2023, 12, 2300484; e) J. Xu, J. Guo, S. Li, Y. Yang, W. Lai, P. Keoingthong, S. Wang, L. Zhang, Q. Dong, Z. Zeng, Z. Chen, Adv. Sci. 2023, 10, 2300980; f) L. Yuan, J. Yang, S. Qi, Y. Liu, X. Tian, T. Jia, Y. Wang, C. Dou, Angew. Chem., Int. Ed. 2023, 62, e202314982.
- 8a) Y. Apeloig, D. Bravo-Zhivotovskii, M. Bendikov, D. Danovich, M. Botoshansky, M. Voronkov, R. Samoilova, M. Zdravkova, V. Igonin, V. Shklover, Y. Struchkov, J. Am. Chem. Soc. 1999, 121, 8118; b) L. Ji, J. Shi, J. Wei, T. Yu, W. Huang, Adv. Mater. 2020, 32, 1908015; c) Z. X. Chen, Y. Li, F. Huang, Chem 2021, 7, 288.
- 9a) H. Ke, X.-M. Zhu, S.-M. Xie, P.-X. Ming, J.-Z. Liao, Inorg. Chem. Front. 2022, 9, 2568; b) C. Che, S. Tong, Y. Jia, J. Yang, X. He, S. Han, Q. Jiang, Y. Ma, Front Chem 2023, 11, 1187378; c) Z. Huang, Y. Wang, Y. Yang, Y. Gao, Y. Luo, X. Li, N. Li, Y. Liu, Q. Zhao, S. Li, X.-H. Zhang, ACS Mater. Lett. 2024, 6, 535.
- 10a) C.-H. Lim, M. D. Ryan, B. G. McCarthy, J. C. Theriot, S. M. Sartor, N. H. Damrauer, C. B. Musgrave, G. M. Miyake, J. Am. Chem. Soc. 2016, 139, 348; b) A. Bhattacherjee, M. Sneha, L. Lewis-Borrell, G. Amoruso, T. A. A. Oliver, J. Tyler, I. P. Clark, A. J. Orr-Ewing, J. Am. Chem. Soc. 2021, 143, 3613; c) Y. Zhang, D. Jiang, Z. Fang, N. Zhu, N. Sun, W. He, C. Liu, L. Zhao, K. Guo, Chem. Sci. 2021, 12, 9432; d) J. Lin, J. Ouyang, T. Liu, F. Li, H. H.-Y. Sung, I. Williams, Y. Quan, Nat. Commun. 2023, 14, 7757.
- 11Y. Su, X. Jin, J. Su, Y. Feng, Q. Wang, Z. Zhang, H. Tian, X. Ma, Adv. Opt. Mater. 2023, 11, 2300604.
- 12Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Adv. Mater. 2012, 25, 1353.
- 13a) S. Ayachi, X. He, H. J. Yoon, Adv. Energy Mater. 2023, 13, 2300937; b) W.-Y. Lee, M.-S. Kang, G.-S. Kim, J. W. Choi, N.-W. Park, Y. Sim, Y.-H. Kim, M.-J. Seong, Y.-G. Yoon, E. Saitoh, S.-K. Lee, ACS Nano 2022, 16, 3404.
- 14a) M. e. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. Nakatsuji, Gaussian, Inc, Wallingford, CT, 2016; b) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2007, 120, 215; c) E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997.
- 15D. Ditmars, S. Ishihara, S. Chang, G. Bernstein, E. West, J. Res. Nat. Bur. Stand. 1982, 87, 159.