Achieving “Ion Diode” Salt Resistance in Solar Interfacial Evaporation by a Tesla Valve-Like Water Transport Structure
Yinzhi Ji
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 P. R. China
Search for more papers by this authorMengyuan Qiang
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorQi Zhao
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorYalu Mo
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorLinjing Fu
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorZiyan Lin
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorHeyu Yang
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 P. R. China
Search for more papers by this authorCorresponding Author
Yonglei Xing
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gang Ni
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yawei Yang
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYinzhi Ji
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 P. R. China
Search for more papers by this authorMengyuan Qiang
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorQi Zhao
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorYalu Mo
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorLinjing Fu
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorZiyan Lin
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorHeyu Yang
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 P. R. China
Search for more papers by this authorCorresponding Author
Yonglei Xing
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gang Ni
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yawei Yang
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Salt deposition is a disturbing problem that limits the development of passive solar-driven interfacial evaporation. Inspired by the passive fluid control mechanism of the Tesla valve, a novel solar evaporator is proposed with a Tesla valve-like water transport structure to prevent salt accumulation at the evaporation interface. A unique “ion diode” salt resistance of this evaporator is significantly achieved by optimizing the two asymmetric water transport structures, consisting of one Tesla valve-like side and one wide-leg side, which establish a reverse-suppressing and forward-accelerating water transport channel. In contrast to the limited ion migration of the typical symmetric solar evaporator, such a channel caused by the water/salt ions transport difference between two water supply structures, reinforces the water/salt ions supply on the wide-leg side, thus leading to an apparent unidirectional salt ions migration from the wide-leg side to bulk water through the Tesla valve-like side. Consequently, an evaporation rate of 3.25 kg m−2 h−1 and a conversion efficiency of 83.27% under 2 suns are achieved in 16 wt% NaCl solution. The development of the Tesla Valve-like evaporator provides a new perspective for solving salt deposition and realizing scalable applications of solar-driven interfacial evaporation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202403606-sup-0001-SuppMat.docx4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Nawaz, Y. Yang, Q. Zhao, Y. Mo, Z. Jiang, J. Wu, Y. Liu, B. Liu, B. Gao, W. Que, Adv. Energy Mater. 2024, 14, 2400135.
- 2Q. Zhao, Y. Yang, C. Pan, B. Zhu, Z. Sha, Y. Wei, W. Que, Sol. Energy 2023, 266, 112187.
10.1016/j.solener.2023.112187 Google Scholar
- 3Y. Wei, Y. Yang, Q. Zhao, Y. Ma, M. Qiang, L. Fu, Y. Liu, J. Zhang, Z. Qu, W. Que, Small 2024, 2312241.
10.1002/smll.202312241 Google Scholar
- 4H. Wang, C. Zhang, Z. Zhang, B. Zhou, J. Shen, A. Du, Adv. Funct. Mater. 2020, 30, 2005513.
- 5V. D. Dao, N. H. Vu, S. Yun, Nano Energy 2020, 68, 104324.
- 6V. D. Dao, N. H. Vu, H. L. T. Dang, S. Yun, Nano Energy 2021, 85, 105979.
- 7X. Chen, S. He, M. M. Falinski, Y. Wang, T. Li, S. Zheng, D. Sun, J. Dai, Y. Bian, X. Zhu, J. Jiang, L. Hu, Z. J. Ren, Energy Environ. Sci. 2021, 14, 1176.
- 8C. Hu, W. Li, H. Zhao, C. Li, Z. Ma, L. Hao, Y. Pang, Z. Yu, X. Li, Chem. Eng. J. 2023, 460, 141622.
- 9Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu, X. Liu, Adv. Funct. Mater. 2019, 29, 1905485.
- 10N. A. Tran, N. T. Hien, N. M. Hoang, H. L. T. Dang, D. Q. Huy, T. V. Quy, N. T. Hanh, N. H. Vu, V. D. Dao, Desalination 2023, 548, 116285.
- 11L. Chen, M. Yin, C. Xiao, Y. Jin, Y. Guo, Q. M. Hasi, Desalination 2024, 575, 117312.
- 12M. S. Irshad, N. Arshad, M. S. Asghar, Y. Hao, M. Alomar, S. Zhang, J. Zhang, J. Guo, I. Ahmed, N. Mushtaq, M. A. K. Y. Shah, L. Noureen, S. Wageh, O. A. Al Hartomy, A. Kalam, V. D. Dao, H. Wang, X. Wang, H. Zhang, Adv. Funct. Mater. 2023, 33, 2304936.
- 13J. Zhou, L. Yang, X. Cao, Y. Ma, H. Sun, J. Li, Z. Zhu, R. Jiao, W. Liang, A. Li, J. Colloid Interface Sci. 2024, 654, 819.
- 14L. Zhang, Y. Zhang, M. Zou, C. Yu, C. Li, C. Gao, Z. Dong, L. Wu, Y. Song, Adv. Funct. Mater. 2023, 33, 202300318.
- 15X. Xu, Q. Zhao, Q. Liu, J. Qiu, J. Li, W. Zheng, J. Cao, L. Wang, W. Wang, S. Yuan, A. Fu, H. Yang, C. Wang, J. Xu, B. Lu, Desalination 2024, 577, 117400.
- 16Q. Zhao, J. Liu, Z. Wu, X. Xu, H. Ma, J. Hou, Q. Xu, R. Yang, K. Zhang, M. Zhang, H. Yang, W. Peng, X. Liu, C. Zhang, J. Xu, B. Lu, Chem. Eng. J. 2022, 442, 136284.
- 17C. Gao, B. Zhou, J. Li, Y. Chen, Q. Wang, J. Mao, J. Guo, Chem. Eng. J. 2023, 468, 142002.
10.1016/j.cej.2023.142002 Google Scholar
- 18Q. Zhao, Z. Wu, X. Xu, R. Yang, H. Ma, Q. Xu, K. Zhang, M. Zhang, J. Xu, B. Lu, Sep. Purif. Technol. 2022, 300, 121889.
- 19X. Chen, P. Li, J. Wang, J. Wan, N. Yang, B. Xu, L. Tong, L. Gu, J. Du, J. Lin, R. Yu, D. Wang, Nano Res. 2022, 15, 4117.
- 20C. Ma, W. Wang, Q. Chen, Z. Jia, X. Zhang, J. Shi, J. Zhu, R. Zhang, C. Wang, Chem. Eng. J. 2024, 480, 148248.
- 21X. Ma, X. Wan, Z. Fang, Z. Li, X. Wang, Y. Hu, M. Dong, Z. Ye, X. Peng, Desalination 2022, 522, 115399.
- 22Y. Yang, H. Zhao, Z. Yin, J. Zhao, X. Yin, N. Li, D. Yin, Y. Li, B. Lei, Y. Du, W. Que, Mater. Horiz. 2018, 5, 1143.
- 23R. Djellabi, L. Noureen, V. D. Dao, D. Meroni, E. Falletta, D. D. Dionysiou, C. L. Bianchi, Chem. Eng. J. 2022, 431, 134024.
- 24Y. Xia, Y. Li, S. Yuan, Y. Kang, M. Jian, Q. Hou, L. Gao, H. Wang, X. Zhang, J. Mater. Chem. A 2020, 8, 16212.
- 25C. Shi, X. Zhang, A. Nilghaz, Z. Wu, T. Wang, B. Zhu, G. Tang, B. Su, J. Tian, Chem. Eng. J. 2023, 455, 140361.
- 26X. Liu, F. Chen, Y. Li, H. Jiang, D. D. Mishra, F. Yu, Z. Chen, C. Hu, Y. Chen, L. Qu, W. Zheng, Adv. Mater. 2022, 34, 2203137.
- 27L. Li, N. He, B. Jiang, K. Yu, Q. Zhang, H. Zhang, D. Tang, Y. Song, Adv. Funct. Mater. 2021, 31, 2104380.
- 28Q. Zhao, Y. Yang, B. Zhu, Z. Sha, H. Zhu, Z. Wu, F. Nawaz, Y. Wei, L. Luo, W. Que, Desalination 2023, 568, 116999.
- 29Y. Luo, F. Song, X. Wang, Y. Wang, J. Mater. Chem. A 2023, 11, 3118.
- 30V. D. Dao, T. K. N. Huyen, J. Power Sources 2024, 603, 234676.
10.1016/j.jpowsour.2024.234676 Google Scholar
- 31Y. Liu, X. Tan, Z. Liu, E. Zeng, J. Mei, Y. Jiang, P. Li, W. Sun, W. Zhao, C. Tian, Y. Dong, Z. Xie, C. A. Wang, Small 2024, 202400796.
- 32M. Sheng, Y. Yang, X. Bin, S. Zhao, C. Pan, F. Nawaz, W. Que, Nano Energy 2021, 89, 106468.
- 33F. Nawaz, Y. Yang, S. Zhao, M. Sheng, C. Pan, W. Que, J. Mater. Chem. A 2021, 9, 16233.
- 34R. Gu, Z. Yu, Y. Su, Y. Li, S. Cheng, Sep. Purif. Technol. 2023, 322, 124322.
- 35Y. Pan, E. Li, Y. Wang, C. Liu, C. Shen, X. Liu, Environ. Sci. Technol. 2022, 56, 11818.
- 36Y. Yang, H. Feng, W. Que, Y. Qiu, Y. Li, L. Guo, Q. Li, Adv. Funct. Mater. 2023, 33, 2210972.
- 37J. Raffel, S. Ansari, D. S. Nobes, J. Fluids Eng.-T. Asme 2021, 143, 111205.
- 38P. Hu, P. Wang, L. Liu, X. Ruan, L. Zhang, Z. Xu, Phys. Fluids 2022, 34, 33603.
- 39Z. Liu, W. Shao, Y. Sun, B. Sun, Eng. Appl. Comput. Fluid Mech. 2022, 16, 441.
- 40U. Misra, N. H. Barbhuiya, Z. H. Rather, S. P. Singh, Adv. Colloid Interface Sci. 2024, 327, 103154.
- 41Y. Chen, L. Cheng, Q. Liu, M. Chen, C. Li, L. Wang, J. Shen, P. Senin, S. Yan, T. Bian, Appl. Surf. Sci. 2024, 656, 159667.
- 42Y. Tian, R. Song, Y. Li, R. Zhu, X. Yang, D. Wu, X. Wang, J. Song, J. Yu, T. Gao, F. Li, Adv. Funct. Mater. 2024, 34, 202309470.
- 43V. D. Dao, N. H. Vu, H. S. Choi, J. Power Sources 2020, 448, 227388.
- 44V. D. Dao, Sci. Total Environ. 2021, 759, 143490.
- 45M. Zou, Y. Zhang, Z. Cai, C. Li, Z. Sun, C. Yu, Z. Dong, L. Wu, Y. Song, Adv. Mater. 2021, 33, 2102443.
- 46X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu, X. Yang, H. Xu, Adv. Funct. Mater. 2021, 31, 2102618.
- 47Z. Liu, Z. Zhou, N. Wu, R. Zhang, B. Zhu, H. Jin, Y. Zhang, M. Zhu, Z. Chen, ACS Nano 2021, 15, 13007.
- 48M. S. Irshad, Y. Hao, N. Arshad, M. Alomar, L. Lin, X. Li, S. Wageh, O. A. Al-Hartomy, A. G. Al-Sehemi, V. D. Dao, H. Wang, X. Wang, H. Zhang, Chem. Eng. J. 2023, 458, 141431.
- 49L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N. X. Fang, C. Li, C. Yu, Y. Zhang, Y. Song, Nat. Commun. 2020, 11, 521.
- 50Y. Chen, J. Yang, L. Zhu, X. Jia, S. Wang, Y. Li, H. Song, J. Mater. Chem. A 2021, 9, 15482.
- 51H. Yao, P. Zhang, C. Yang, Q. Liao, X. Hao, Y. Huang, M. Zhang, X. Wang, T. Lin, H. Cheng, J. Yuan, L. Qu, Energy Environ. Sci. 2021, 14, 5330.
- 52S. A. Muhammad, A. Naila, S. I. Muhammad, I. Sultan, A. Najah, X. Wang, A. A. Muhammad, A. Iftikhar, J. Li, T. T. Van, A. D. Vu, V. D. Dao, J. Guo, Sol. Energy 2024, 274, 112572.
10.1016/j.solener.2024.112572 Google Scholar
- 53N. T. Cuong, N. V. Canh, N. H. Hoa, T. H. Pham, H. T. Pham, L. T. H. Phong, C. T. A. Tuyet, N. T. N. Hang, V. D. Dao, V. Nguyen, Desalination 2024, 574, 117303.
- 54M. S. Irshad, N. Arshad, J. Zhang, C. Song, N. Mushtaq, M. Alomar, T. Shamim, V. D. Dao, H. Wang, X. Wang, H. Zhang, Adv. Energy Sustain. Res. 2023, 4, 202200158.
10.1002/aesr.202200158 Google Scholar
- 55Y. Li, J. Zhu, J. Liu, S. Guo, J. Liu, S. Lu, B. Song, J. Cleaner Prod. 2024, 434, 139956.
- 56Z. Yu, R. Gu, Y. Su, Y. Li, G. Liu, S. Cheng, J. Hazard. Mater. 2024, 474, 134739.
- 57P. Li, D. He, J. Sun, J. Qiu, Z. Wang, J. Energy Chem. 2024, 95, 694.