Architecting Ni3Se4-NiSe2-Co3O4 Triple-Interface Heterostructure on MXene Nanosheets for Boosting Water Splitting by Electronic Modulation and Interface Effects
Corresponding Author
Liang Yan
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYonghang Chen
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007 P. R. China
Search for more papers by this authorJiachun Xie
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007 P. R. China
Search for more papers by this authorCorresponding Author
Hao Li
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liang Yan
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYonghang Chen
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007 P. R. China
Search for more papers by this authorJiachun Xie
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007 P. R. China
Search for more papers by this authorCorresponding Author
Hao Li
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Strategically engineering electrocatalysts with optimized interfacial electronic architectures and accelerated reaction dynamics is pivotal for augmenting hydrogen generation via alkaline water electrolysis on an industrial scale. Herein, a novel triple-interface heterostructure Ni3Se4-NiSe2-Co3O4 nanoarrays are designed anchored on Ti3C2Tx MXene (Ni3Se4-NiSe2-Co3O4/MXene) with significant work function difference (ΔΦ) as bifunctional electrocatalysts for water electrolysis. Theoretical calculations combined with experiments uncover the pivotal role of the interface-induced electric field in steering charge redistribution, which in turn modulates the adsorption and desorption kinetics of reaction intermediates. Furthermore, the synergistic interaction between Ni3Se4-NiSe2-Co3O4 and Ti3C2Tx MXene nanosheets endows the hybrids with a large electrochemical surface area, abundantly active sites, and high conductivity. Thus, Ni3Se4-NiSe2-Co3O4/MXene manifests exceptional catalytic prowess for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In addition, the Ni3Se4-NiSe2-Co3O4/MXene electrocatalyst in the water electrolyzer delivers excellent performance and maintains commendable stability beyond 100 h of electrocatalytic operation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403596-sup-0001-SuppMat.docx6.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. J. Jang, S. H. Yang, M. G. Park, J. Jeong, M. S. Cha, S.-H. Shin, K. H. Lee, Z. Bai, Z. Chen, J. Y. Lee, S. M. Choi, ACS Energy Lett. 2022, 7, 2576.
- 2Z.-Y. Yu, Y. Duan, X.-Y. Feng, X. Yu, M.-R. Gao, S.-H. Yu, Adv. Mater. 2021, 33, 2007100.
- 3K. Wu, C. Lyu, J. Cheng, W. Ding, J. Wu, Q. Wang, W.-M. Lau, J. Zheng, Carbon Energy 2024, 6, e485.
- 4a) L. Yan, D. Song, J. Liang, X. Li, H. Li, Q. Liu, J. Colloid Interface Sci. 2023, 640, 338; b) L. Yan, Z. Du, X. Lai, J. Lan, X. Liu, J. Liao, Y. Feng, H. Li, Int. J. Hydrogen Energy 2023, 48, 1892.
- 5a) H. Xie, Y. Feng, X. He, Y. Zhu, Z. Li, H. Liu, S. Zeng, Q. Qian, G. Zhang, Small 2023, 19, 2207425; b) W. Han, J. Ning, Y. Long, J. Qiu, W. Jiang, Y. Wang, L. A. Shah, D. Yang, A. Dong, T. Li, Adv. Energy Mater. 2023, 13, 2300145.
- 6a) L. Yan, B. Zhang, J. Zhu, Y. Li, P. Tsiakaras, P. K. Shen, Appl. Catal., B 2020, 265, 118555; b) L. Yan, B. Zhang, S. Wu, J. Yu, J. Mater. Chem. A 2020, 8, 14234.
- 7a) Y. Qie, Y. Liu, F. Kong, Z. Yang, H. Yang, Nano Res. 2022, 15, 3901; b) H. Li, M. Hu, L. Zhang, L. Huo, P. Jing, B. Liu, R. Gao, J. Zhang, B. Liu, Adv. Funct. Mater. 2020, 30, 2003198.
- 8a) L. Yan, B. Zhang, J. Mater. Chem. A 2021, 9, 20758; b) T. Wang, L. Miao, S. Zheng, H. Qin, X. Cao, L. Yang, L. Jiao, ACS Catal. 2023, 13, 4091.
- 9X. Xia, L. Wang, N. Sui, V. L. Colvin, W. W. Yu, Nanoscale 2020, 12, 12249.
- 10L. Tan, J. Yu, H. Wang, H. Gao, X. Liu, L. Wang, X. She, T. Zhan, Appl. Catal., B 2022, 303, 120915.
- 11S. Jin, ACS Energy Lett. 2017, 2, 1937.
- 12Q. Xu, J. Zhang, H. Zhang, L. Zhang, L. Chen, Y. Hu, H. Jiang, C. Li, Energy Environ. Sci. 2021, 14, 5228.
- 13D. Zheng, L. Yu, W. Liu, X. Dai, X. Niu, W. Fu, W. Shi, F. Wu, X. Cao, Cell Rep. Phys. Sci. 2021, 2, 100443.
- 14J. Xiao, S. Zhang, Y. Sun, X. Liu, G. He, H. Liu, J. Khan, Y. Zhu, Y. Su, S. Wang, L. Han, Small 2023, 19, 2206472.
- 15Y. Chang, Z. Ma, X. Lu, S. Wang, J. Bao, Y. Liu, C. Ma, Angew. Chem., Int. Ed. 2023, 62, 202310163.
- 16a) G. Li, T. Sun, H.-J. Niu, Y. Yan, T. Liu, S. Jiang, Q. Yang, W. Zhou, L. Guo, Adv. Funct. Mater. 2023, 33, 2212514; b) Y. Jia, Y. Li, Q. Zhang, S. Yasin, X. Zheng, K. Ma, Z. Hua, J. Shi, C. Gu, Y. Dou, S. Dou, Carbon Energy 2024, 6, e528.
- 17a) J. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Adv. Funct. Mater. 2017, 27, 1701264; b) S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion, Y. Gogotsi, J. M. Razal, Adv. Funct. Mater. 2020, 30, 1910504.
- 18H.-J. Niu, Y. Yan, S. Jiang, T. Liu, T. Sun, W. Zhou, L. Guo, J. Li, ACS Nano 2022, 16, 11049.
- 19Y. Wu, W. Wei, R. Yu, L. Xia, X. Hong, J. Zhu, J. Li, L. Lv, W. Chen, Y. Zhao, L. Zhou, L. Mai, Adv. Funct. Mater. 2022, 32, 2110910.
- 20L. Wang, Y. Hao, L. Deng, F. Hu, S. Zhao, L. Li, S. Peng, Nat. Commun. 2022, 13, 5785.
- 21N. Li, J. Han, K. Yao, M. Han, Z. Wang, Y. Liu, L. Liu, H. Liang, J. Mater. Sci. Technol. 2022, 106, 90.
- 22B. Zhang, J. Shan, X. Wang, Y. Hu, Y. Li, Small 2022, 18, 2200173.
- 23Y. Wen, Z. Wei, J. Liu, R. Li, P. Wang, B. Zhou, X. Zhang, J. Li, Z. Li, J. Energy Chem. 2021, 52, 412.
- 24L. Yan, J. Liang, D. Song, X. Li, H. Li, Adv. Funct. Mater. 2024, 34, 2308345.
- 25J. Zheng, X. Pan, X. Huang, D. Xiong, Y. Shang, X. Li, N. Wang, W.-M. Lau, H. Y. Yang, Chem. Eng. J. 2020, 396, 125197.
- 26D. Song, J. Sun, L. Sun, S. Zhai, G. W. Ho, H. Wu, W.-Q. Deng, Adv. Energy Mater. 2021, 11, 2100358.
- 27W. Wang, Y.-B. Zhu, Q. Wen, Y. Wang, J. Xia, C. Li, M.-W. Chen, Y. Liu, H. Li, H.-A. Wu, T. Zhai, Adv. Mater. 2019, 31, 1900528.
- 28a) Q. Qian, J. Zhang, J. Li, Y. Li, X. Jin, Y. Zhu, Y. Liu, Z. Li, A. El-Harairy, C. Xiao, G. Zhang, Y. Xie, Angew. Chem., Int. Ed. 2021, 60, 5984; b) M. Kuang, J. Zhang, D. Liu, H. Tan, K. N. Dinh, L. Yang, H. Ren, W. Huang, W. Fang, J. Yao, X. Hao, J. Xu, C. Liu, L. Song, B. Liu, Q. Yan, Adv. Energy Mater. 2020, 10, 2002215.
- 29M. Lin, M. Gu, X. Deng, Q. Xie, X. Zhang, Chem. Eng. J. 2023, 468, 143705.
- 30D. Guo, X. Li, Y. Jiao, H. Yan, A. Wu, G. Yang, Y. Wang, C. Tian, H. Fu, Nano Res. 2022, 15, 238.
- 31B. Wang, C. Tang, H.-F. Wang, X. Chen, R. Cao, Q. Zhang, Adv. Mater. 2019, 31, 1805658.
- 32W. Wang, S.-a. He, Z. Cui, Q. Liu, M. F. Yuen, J. Zhu, H. Wang, M. Gao, W. Luo, J. Hu, R. Zou, Small 2022, 18, 2203948.
- 33B. Jiang, T. Yang, T. Wang, C. Chen, M. Yang, X. Yang, J. Zhang, Z. Kou, Chem. Eng. J. 2022, 442, 136119.
- 34W. Ni, A. Krammer, C.-S. Hsu, H. M. Chen, A. Schüler, X. Hu, Angew. Chem., Int. Ed. 2019, 58, 7445.
- 35Z. Lv, W. Ma, M. Wang, J. Dang, K. Jian, D. Liu, D. Huang, Adv. Funct. Mater. 2021, 31, 2102576.
- 36Y. Wang, B. Li, W. Xiao, X. Wang, Y. Fu, Z. Li, G. Xu, J. Lai, Z. Wu, L. Wang, Chem. Eng. J. 2023, 452, 139175.
- 37J. Zhou, Y. Dou, T. He, A. Zhou, X.-J. Kong, X.-Q. Wu, T. Liu, J.-R. Li, Nano Res. 2021, 14, 4548.
- 38J. Zhang, Q. Xu, J. Wang, Y. Li, H. Jiang, C. Li, Chem. Eng. J. 2021, 424, 130328.
- 39Y. Song, M. Sun, S. Zhang, X. Zhang, P. Yi, J. Liu, B. Huang, M. Huang, L. Zhang, Adv. Funct. Mater. 2023, 33, 2214081.
- 40C. Huang, Q. Zhou, D. Duan, L. Yu, W. Zhang, Z. Wang, J. Liu, B. Peng, P. An, J. Zhang, L. Li, J. Yu, Y. Yu, Energy Environ. Sci. 2022, 15, 4647.
- 41a) Z.-Y. Wang, L. Wang, S. Liu, G.-R. Li, X.-P. Gao, Adv. Funct. Mater. 2019, 29, 1901051; b) A. Moysiadou, S. Lee, C.-S. Hsu, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2020, 142, 11901.
- 42X. Zheng, X. Han, Y. Cao, Y. Zhang, D. Nordlund, J. Wang, S. Chou, H. Liu, L. Li, C. Zhong, Y. Deng, W. Hu, Adv. Mater. 2020, 32, 2000607.
- 43a) Z.-P. Wu, H. Zhang, S. Zuo, Y. Wang, S. L. Zhang, J. Zhang, S.-Q. Zang, X. W. Lou, Adv. Mater. 2021, 33, 2103004; b) L. Gao, X. Cui, C. D. Sewell, J. Li, Z. Lin, Chem. Soc. Rev. 2021, 50, 8428.
- 44H. Su, S. Song, Y. Gao, N. Li, Y. Fu, L. Ge, W. Song, J. Liu, T. Ma, Adv. Funct. Mater. 2022, 32, 2109731.
- 45W. Luo, Y. Yu, Y. Wu, Z. Ma, X. Ma, Y. Jiang, W. Shen, R. He, W. Su, M. Li, Appl. Catal., B 2023, 336, 122928.
- 46Y. Li, X. Tan, R. K. Hocking, X. Bo, H. Ren, B. Johannessen, S. C. Smith, C. Zhao, Nat. Commun. 2020, 11, 2720.
- 47X. Ding, J. Yu, W. Huang, D. Chen, W. Lin, Z. Xie, Chem. Eng. J. 2023, 451, 138550.
- 48W. Liu, X. Wang, J. Qu, Y. Ma, X. Liu, C. Kuai, Y. Guo, H. Yin, D. Wang, Cell Rep. Phys. Sci. 2022, 3, 100784.