Regulating Water Adsorption Sites of Keto-Enamine COF by Base Exfoliation and Deprotonation for Enhanced Humidity Response
Aohan Mei
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorHongbing Guo
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorWenyuan Zhang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Yueli Liu
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wen Chen
Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAohan Mei
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorHongbing Guo
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorWenyuan Zhang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Yueli Liu
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wen Chen
Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Covalent organic framework (COF) has received much attention owing to its unique framework structure formed by diverse organic units. However, challenges, including low conductivity, structure instability, and limited control of adsorption and desorption processes, stimulate the modification of COF in electronic sensors. Herein, inspired by the alterable structure of COF in different solvents, a facile base exfoliation and deprotonation method is proposed to regulate the water adsorption sites and improve the intrinsic conductivity of TpPa-1 COF. TpPa-1 COF powders are exfoliated to nanosheets to increase water adsorption, while the deprotonation is utilized to adjust the affinity of water molecules on TpPa-1 COF framework, contributing to water accumulation in the 1D pores. The as-fabricated TpPa-1 COF sensor exhibits a decreased recovery time from 419 to 49 s, forming a linear relation between relative humidity (RH) value and humidity response. The excellent chemical stability of the covalent bond of TpPa-1 COF contributes to the excellent stable device performance in 30 days, promoting further integration and data analysis in respiration monitoring.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403521-sup-0001-SuppMat.docx2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Li, G. Xiao, F. Liu, Y. Qiao, C. M. Li, Z. Lu, J. Mater. Chem. C 2018, 6, 4549.
- 2A. Kumar, A. Kumar, G. D. Varma, J. Mater. Chem. C 2021, 9, 8002.
- 3L. Xu, H. Zhai, X. Chen, Y. Liu, M. Wang, Z. Liu, M. Umar, C. Ji, Z. Chen, L. Jin, Z. Liu, Q. Song, P. Yue, Y. Li, T. T. Ye, Chem. Eng. J. 2021, 412, 128639.
- 4Z. Duan, Y. Jiang, M. Yan, S. Wang, Z. Yuan, Q. Zhao, P. Sun, G. Xie, X. Du, H. Tai, ACS Appl. Mater. Interfaces 2019, 11, 21840.
- 5S.-J. Choi, H. Yu, J.-S. Jang, M.-H. Kim, S.-J. Kim, H. S. Jeong, I.-D. Kim, Small 2018, 14, 1703934.
- 6Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling, Y. Li, X. Wang, Y. Qiao, H. Tian, Y. Yang, T.-L. Ren, Biosens. Bioelectron. 2018, 116, 123.
- 7T. Li, L. Li, H. Sun, Y. Xu, X. Wang, H. Luo, Z. Liu, T. Zhang, Adv. Sci. 2017, 4, 1600404.
- 8L. Lu, C. Jiang, G. Hu, J. Liu, B. Yang, Adv. Mater. 2021, 33, 2100218.
- 9N. Wang, J. Tong, J. Wang, Q. Wang, S. Chen, B. Sheng, ACS Appl. Mater. Interfaces 2022, 14, 11842.
- 10H. Liu, X. Song, X. Wang, S. Wang, N. Yao, X. Li, W. Fang, L. Tong, L. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 14447.
- 11S. Zou, L.-Q. Tao, G. Wang, C. Zhu, Z. Peng, H. Sun, Y. Li, Y. Wei, T.-L. Ren, ACS Appl. Mater. Interfaces 2022, 14, 12606.
- 12L. Lan, X. Le, H. Dong, J. Xie, Y. Ying, J. Ping, Biosens. Bioelectron. 2020, 165, 112360.
- 13M. Chen, L. Xu, Y. Liu, M. Yu, Y. Li, T. T. Ye, ACS Appl. Mater. Interfaces 2022, 14, 24946.
- 14Z. Duan, Y. Jiang, H. Tai, J. Mater. Chem. C 2021, 9, 14963.
- 15Z. Weng, J. Qin, A. A. Umar, J. Wang, X. Zhang, H. Wang, X. Cui, X. Li, L. Zheng, Y. Zhan, Adv. Funct. Mater. 2019, 29, 1902234.
- 16J. Wei, C. Zhu, Z. Zeng, F. Pan, F. Wan, L. Lei, G. Nyström, Z. Fu, Interdiscip Mater 2022, 1, 495.
- 17K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang, T. Yang, Y. Liu, Y. Zhang, H. Zhang, Adv. Funct. Mater. 2019, 29, 1900991.
- 18K. Chen, W. Jin, Y. Zhang, T. Yang, P. Reiss, Q. Zhong, U. Bach, Q. Li, Y. Wang, H. Zhang, Q. Bao, Y. Liu, J. Am. Chem. Soc 2020, 142, 3775.
- 19C. Gu, N. Hosono, J.-J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387.
- 20S. Wang, Z. Xie, D. Zhu, S. Fu, Y. Wu, H. Yu, C. Lu, P. Zhou, M. Bonn, H. I. Wang, Q. Liao, H. Xu, X. Chen, C. Gu, Nat. Commun. 2023, 14, 6891.
- 21M. Zhou, Z. Wang, A. Mei, Z. Yang, W. Chen, S. Ou, S. Wang, K. Chen, P. Reiss, K. Qi, J. Ma, Y. Liu, Nat. Commun. 2023, 14, 2473.
- 22Y. Su, K.-i. Otake, J.-J. Zheng, H. Xu, Q. Wang, H. Liu, F. Huang, P. Wang, S. Kitagawa, C. Gu, Nat. Commun. 2024, 15, 144.
- 23Y. Su, K.-i. Otake, J.-J. Zheng, S. Horike, S. Kitagawa, C. Gu, Nature 2022, 611, 289.
- 24Y. Su, Z. Wang, A. Legrand, T. Aoyama, N. Ma, W. Wang, K.-i. Otake, K. Urayama, S. Horike, S. Kitagawa, S. Furukawa, C. Gu, J. Am. Chem. Soc. 2022, 144, 6861.
- 25Y. Su, B. Li, H. Xu, C. Lu, S. Wang, B. Chen, Z. Wang, W. Wang, K.-i. Otake, S. Kitagawa, L. Huang, C. Gu, J. Am. Chem. Soc. 2022, 144, 18218.
- 26S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 2019, 141, 1807.
- 27K. Dey, S. Mohata, R. Banerjee, ACS Nano 2021, 15, 12723.
- 28X. Chen, K. Geng, R. Liu, K. T. Tan, Y. Gong, Z. Li, S. Tao, Q. Jiang, D. Jiang, Angew. Chem., Int. Ed. 2020, 59, 5050.
- 29L. Huang, J. Yang, Y. Asakura, Q. Shuai, Y. Yamauchi, ACS Nano 2023, 17, 8918.
- 30X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871.
- 31Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Chem. Soc. Rev. 2020, 49, 708.
- 32J. Yang, A. Acharjya, M.-Y. Ye, J. Rabeah, S. Li, Z. Kochovski, S. Youk, J. Roeser, J. Grüneberg, C. Penschke, M. Schwarze, T. Wang, Y. Lu, R. van de Krol, M. Oschatz, R. Schomäcker, P. Saalfrank, A. Thomas, Angew. Chem., Int. Ed. 2021, 60, 19797.
- 33L.-J. Wang, P.-Y. Dong, G. Zhang, F.-M. Zhang, Energy Fuels 2023, 37, 6323.
- 34K. Liu, J. Yang, J. Liu, Q. Shuai, Y. Yamauchi, M. Han, L. Huang, Chem. Eng. J. 2023, 472, 144966.
- 35J. Yang, L. Huang, J. You, Y. Yamauchi, Small 2023, 19, 2301044.
- 36C. Qian, L. Feng, W. L. Teo, J. Liu, W. Zhou, D. Wang, Y. Zhao, Nat. Rev. Chem. 2022, 6, 881.
- 37P. She, Y. Qin, X. Wang, Q. Zhang, Adv. Mater. 2022, 34, 2101175.
- 38Z. Meng, K. A. Mirica, Chem. Soc. Rev. 2021, 50, 13498.
- 39X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, S. Chen, Chem. Soc. Rev. 2019, 48, 5266.
- 40Y. Yue, P. Cai, X. Xu, H. Li, H. Chen, H.-C. Zhou, N. Huang, Angew. Chem., Int. Ed. 2021, 60, 10806.
- 41J. Wang, Q. Cao, X.-F. Cheng, W. Ye, J.-H. He, J.-M. Lu, ACS Sens 2022, 7, 3782.
- 42M. Liu, Y.-J. Chen, X. Huang, L.-Z. Dong, M. Lu, C. Guo, D. Yuan, Y. Chen, G. Xu, S.-L. Li, Y.-Q. Lan, Angew. Chem., Int. Ed. 2022, 61, 202115308.
- 43F. Yuan, Y. Kong, J. You, C. Zhang, Y. Xian, ACS Appl. Mater. Interfaces 2021, 13, 51351.
- 44C. Guan, J. Cai, X. Liu, L. Guo, Sens. Actuators B-Chem. 2022, 355, 131323.
- 45L. Gilmanova, V. Bon, L. Shupletsov, D. Pohl, M. Rauche, E. Brunner, S. Kaskel, J. Am. Chem. Soc. 2021, 143, 18368.
- 46L. Ascherl, E. W. Evans, M. Hennemann, D. Di Nuzzo, A. G. Hufnagel, M. Beetz, R. H. Friend, T. Clark, T. Bein, F. Auras, Nat. Commun. 2018, 9, 3802.
- 47Q. Hao, X.-R. Ren, Y. Chen, C. Zhao, J. Xu, D. Wang, H. Liu, Nat. Commun. 2023, 14, 578.
- 48Y. Zhang, W. Zhang, Q. Li, C. Chen, Z. Zhang, Sens. Actuators B-Chem 2020, 324, 128733.
- 49H. Singh, V. K. Tomer, N. Jena, I. Bala, N. Sharma, D. Nepak, A. De Sarkar, K. Kailasam, S. K. Pal, J. Mater. Chem. A 2017, 5, 21820.
- 50Y. Shi, M. R. Momeni, Y.-J. Chen, D. K. Limbu, Z. Zhang, F. A. Shakib, Chem. Mater. 2022, 34, 7730.
- 51Y. Zhu, S. Jiang, X. Jing, X. Feng, Trends Chem 2022, 4, 128.
- 52S. A. Ahmed, Q.-B. Liao, Q. Shen, M. M. F. Ashraf Baig, J. Zhou, C.-F. Shi, P. Muhammad, S. Hanif, K. Xi, X.-H. Xia, K. Wang, Chemistry – A European Journal 2020, 26, 12996.
- 53D. W. Burke, C. Sun, I. Castano, N. C. Flanders, A. M. Evans, E. Vitaku, D. C. McLeod, R. H. Lambeth, L. X. Chen, N. C. Gianneschi, W. R. Dichtel, Angew. Chem., Int. Ed. 2020, 59, 5165.
- 54Y. Tao, W. Ji, X. Ding, B.-H. Han, J. Mater. Chem. A 2021, 9, 7336.
- 55S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524.
- 56X. Li, S. Cai, B. Sun, C. Yang, J. Zhang, Y. Liu, Matter 2020, 3, 1507.
- 57Y. Wang, W. Chen, J. Fu, Y. Liu, eScience 2023, 3, 100154.
- 58Y.-H. Yao, J. Li, H. Zhang, H.-L. Tang, L. Fang, G.-D. Niu, X.-J. Sun, F.-M. Zhang, J. Mater. Chem. 2020, 8, 8949.
- 59Y. Yang, C. Tian, J. Wang, L. Sun, K. Shi, W. Zhou, H. Fu, Nanoscale 2014, 6, 7369.
- 60C. L. Hawkins, M. J. Davies, BBA – General Subjects 2014, 1840, 708.
- 61A. Mei, W. Chen, Z. Yang, M. Zhou, W. Jin, S. Yang, K. Chen, Y. Liu, Angew. Chem., Int. Ed. 2023, 62, 202301440.
- 62B. P. Biswal, S. Kandambeth, S. Chandra, D. B. Shinde, S. Bera, S. Karak, B. Garai, U. K. Kharul, R. Banerjee, J. Mater. Chem. A 2015, 3, 23664.
- 63J. Pérez-Carvajal, G. Boix, I. Imaz, D. Maspoch, Adv. Energy Mater. 2019, 9, 1901535.
- 64C. Kang, Z. Zhang, V. Wee, A. K. Usadi, D. C. Calabro, L. S. Baugh, S. Wang, Y. Wang, D. Zhao, J. Am. Chem. Soc. 2020, 142, 12995.