Electrochemical Synthesis of Urea: Co-Reduction of Nitrite and Carbon Dioxide on Binuclear Cobalt Phthalocyanine
Rui Zhang
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorWenhui Hu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorJingjing Liu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorKaidi Xu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorYi Liu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorYahong Yao
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Minmin Liu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXia-Guang Zhang
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorCorresponding Author
Hong Li
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorPeng He
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, ID, 46556 USA
Search for more papers by this authorCorresponding Author
Shengjuan Huo
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorRui Zhang
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorWenhui Hu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorJingjing Liu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorKaidi Xu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorYi Liu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorYahong Yao
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Minmin Liu
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXia-Guang Zhang
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorCorresponding Author
Hong Li
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorPeng He
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, ID, 46556 USA
Search for more papers by this authorCorresponding Author
Shengjuan Huo
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Exploration of molecular catalysts with the atomic-level tunability of molecular structures offers promising avenues for developing high-performance catalysts for the electrochemical co-reduction reaction of carbon dioxide (CO2) and nitrite (NO2−) into value-added urea. In this work, a binuclear cobalt phthalocyanine (biCoPc) catalyst is prepared through chemical synthesis and applied as a C─N coupling catalyst toward urea. Achieving a remarkable Faradaic efficiency of 47.4% for urea production at –0.5 V versus reversible hydrogen electrode (RHE), this biCoPc outperforms many known molecular catalysts in this specific application. Its unique planar macromolecular structure and the increased valence state of cobalt promote the adsorption of nitrogenous and carbonaceous species, a critical factor in facilitating the multi-electron C─N coupling. Combining highly sensitive in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) with density functional theory (DFT) calculations, the linear adsorbed CO (COL) and bridge adsorbed CO (COB) is captured on biCoPc catalyst during the co-reduction reaction. COB, a pivotal intermediate in the co-reduction from CO2 and nitrite to urea, is evidenced to be labile and may be attacked by nitrite, promoting urea production. This work demonstrates the importance of designing molecular catalysts for efficient co-reduction of CO2 and nitrite to urea.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403285-sup-0001-SuppMat.docx4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Amanullah, P. Saha, A. Nayek, M. E. Ahmed, A. Dey, Chem. Soc. Rev. 2021, 50, 3755; b) L. B. Maia, J. J. G. Moura, Chem. Rev. 2014, 114, 5273; c) H. O. N. Tugaoen, S. Garcia-Segura, K. Hristovski, P. Westerhoff, Sci. Total Environ. 2017, 599–600, 1524; d) Y. Liu, X. Tu, X. Wei, D. Wang, X. Zhang, W. Chen, C. Chen, S. Wang, Angew. Chem., Int. Ed. 2023, 62, 202300387; e) X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X.-Z. Fu, S. Wang, J. Am. Chem. Soc. 2022, 144, 11530.
- 2a) H. Wan, X. Wang, L. Tan, M. Filippi, P. Strasser, J. Rossmeisl, A. Bagger, ACS. Catal. 2023, 13, 1926; b) C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li, S. Wang, Nat. Chem. 2020, 12, 717.
- 3a) C. Chen, N. He, S. Wang, Small Sci. 2021, 1, 2100070; b) C. S. Gerke, M. Klenk, P. Zapol, V. S. Thoi, ACS Catal. 2023, 13, 14540; c) J. Lim, C. A. Fernández, S. W. Lee, M. C. Hatzell, ACS. Energy. Lett. 2021, 6, 3676.
- 4a) N. Cao, Y. Quan, A. Guan, C. Yang, Y. Ji, L. Zhang, G. Zheng, J. Colloid. Interface. Sci. 2020, 577, 109;
b) X. Zhang, X. Zhu, S. Bo, C. Chen, K. Cheng, J. Zheng, S. Li, X. Tu, W. Chen, C. Xie, X. Wei, D. Wang, Y. Liu, P. Chen, S. P. Jiang, Y. Li, Q. Liu, C. Li, S. Wang, Angew. Chem., Int. Ed. 2023, 135, 202305447;
10.1002/ange.202305447 Google Scholarc) L. Pan, J. Wang, F. Lu, Q. Liu, Y. Gao, Y. Wang, J. Jiang, C. Sun, J. Wang, X. Wang, Angew. Chem., Int. Ed. 2023, 135, 202216835.10.1002/ange.202216835 Google Scholar
- 5N. Meng, Y. Huang, Y. Liu, Y. Yu, B. Zhang, Cell Rep, Phys. Sci. 2021, 2, 100378.
- 6M. Shibata, K. Yoshida, N. Furuya, Denki Kagaku oyobi Kogyo Butsuri Kagaku 1998, 66, 584.
- 7M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 1998, 442, 67.
- 8S. Liu, S. Yin, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, Cell Rep, Phys. Sci. 2022, 3, 100869.
- 9Y. Feng, H. Yang, Y. Zhang, X. Huang, L. Li, T. Cheng, Q. Shao, Nano Lett. 2020, 20, 8282.
- 10J. Mukherjee, S. Paul, A. Adalder, S. Kapse, R. Thapa, S. Mandal, B. Ghorai, S. Sarkar, U. K. Ghorai, Adv. Funct. Mater. 2022, 32, 2200882.
- 11a) S. Paul, S. Sarkar, A. Adalder, A. Banerjee, U. K. Ghorai, J. Mater. Chem. A 2023, 11, 13249; b) S. Paul, A. Adalder, U. K. Ghorai, Mater. Chem. Front. 2023, 7, 3820;
- 12a) M. Shibata, N. Furuya, J. Electroanal. Chem. 2001, 507, 177; b) M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 1995, 387, 143.
- 13a) S. G. Makarov, S. Y. Ketkov, D. Wöhrle, Chem. Commun. 2020, 56, 5653; b) R. Li, D. Zhang, Y. Zhou, X. Wang, G. Guo, Sci. China. Chem. 2016, 59, 746.
- 14Z. Tao, C. L. Rooney, Y. Liang, H. Wang, J. Am. Chem. Soc. 2021, 143, 19630.
- 15M. Jiang, M. Zhu, M. Wang, Y. He, X. Luo, C. Wu, L. Zhang, Z. Jin, ACS Nano 2023, 17, 3209.
- 16a) W. Liu, L. Ding, M. Liu, X. Wang, Z. Zhang, T.-W. Jiang, S. Huo, W.-B. Cai, Nano. Res. 2023, 16, 10822; b) T.-W. Jiang, Y.-W. Zhou, X.-Y. Ma, X. Qin, H. Li, C. Ding, B. Jiang, K. Jiang, W.-B. Cai, ACS. Catal. 2021, 11, 840.
- 17S. Han, H. Li, T. Li, F. Chen, R. Yang, Y. Yu, B. Zhang, Nat. Catal. 2023, 6, 402.
- 18J.-M. Chen, W.-J. Xie, Z.-W. Yang, L.-N. He, ChemSusChem 2022, 15, 202201455.
- 19M. Manivannan, S. Rajendran, J. Eng. Sci. Technol. 2011, 3, 8048.
- 20N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S.-T. Lee, Y. Li, Chem 2017, 3, 652.
- 21G. Rossi, F. d'Acapito, L. Amidani, F. Boscherini, M. Pedio, Phys. Chem. Chem. Phys. 2016, 18, 23686.
- 22Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W.-C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 4218.
- 23N. Li, D.-H. Si, Q.-j. Wu, Q. Wu, Y.-B. Huang, R. Cao, CCS Chem 2023, 5, 1130.
- 24W. Huang, J. Li, X. Xu, A. Cao, Y. He, M. Sun, L. Kang, New. J. Chem. 2022, 46, 7153.
- 25a) X. Chen, C. Sun, S. Wu, D. Xue, Phys. Chem. Chem. Phys. 2017, 19, 8835; b) Y. Luo, K. Xie, P. Ou, C. Lavallais, T. Peng, Z. Chen, Z. Zhang, N. Wang, X.-Y. Li, I. Grigioni, B. Liu, D. Sinton, J. B. Dunn, E. H. Sargent, Nat. Catal. 2023, 6, 939.
- 26K. Kunimatsu, B. Bae, K. Miyatake, H. Uchida, M. Watanabe, J. Phys. Chem. B 2011, 115, 4315.
- 27S.-J. Huo, J.-Y. Wang, D.-L. Sun, W.-B. Cai, Appl. Spectrosc. 2009, 63, 1162.
- 28S. Zhu, T. Li, W.-B. Cai, M. Shao, ACS Energy Lett. 2019, 4, 682.
- 29H. Xu, Y. Ma, J. Chen, W.-X. Zhang, J. Yang, Chem. Soc. Rev. 2022, 51, 2710.
- 30Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 1994, 39, 1833.
- 31X. Chang, S. Vijay, Y. Zhao, N. J. Oliveira, K. Chan, B. Xu, Nat. Commun. 2022, 13, 2656.
- 32D. P. Butcher, A. A. Gewirth, Nano Energy 2016, 29, 457.