Ultra-Rapid Electrocatalytic H2O2 Fabrication over Mono-Species and High-Density Polypyrrolic-N Sites
Wei Peng
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorRui Chen
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorXiaoqing Liu
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorHaotian Tan
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Lichang Yin
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feng Hou
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
De'an Yang
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ji Liang
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorWei Peng
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorRui Chen
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorXiaoqing Liu
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorHaotian Tan
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Lichang Yin
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feng Hou
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
De'an Yang
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ji Liang
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Electrocatalytic hydrogen peroxide (H2O2) production via two-electron oxygen reduction reaction (2e−-ORR) features energy-saving and eco-friendly characteristics, making it a promising alternative to the anthraquinone oxidation process. However, the common existence of numerous 2e−-ORR-inactive sites/species on electrocatalysts tends to catalyze side reactions, especially under low potentials, which compromises energy efficiency and limits H2O2 yield. Addressing this, a high surface density of mono-species pyrrolic nitrogen configurations is formed over a polypyrrole@carbon nanotube composite. Thermodynamic and kinetic calculation and experimental investigation collaboratively confirm that these densely distributed and highly selective active sites effectively promote high-rate 2e−-ORR electrocatalysis and inhibit side reactions over a wide potential range. Consequently, an ultra-high and stable H2O2 yield of up to 67.9/51.2 mol g−1 h−1 has been achieved on this material at a current density of 200/120 mA cm−1, corresponding Faradaic efficiency of 72.8/91.5%. A maximum H2O2 concentration of 13.47 g L−1 can be accumulated at a current density of 80 mA cm−1 with satisfactory stability. The strategy of surface active site densification thus provides a promising and universal avenue toward designing highly active and efficient electrocatalysts for 2e−-ORR as well as a series of other similar electrochemical processes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202403261-sup-0001-SuppMat.docx3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Samanta, Appl. Catal. A: General. 2008, 350, 133.
- 2J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem., Int. Ed. 2006, 45, 6962.
- 3Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Adv. Energy Mater. 2018, 8, 1801909.
- 4L. Li, Z. Hu, J. C. Yu, Angew. Chem., Int. Ed. 2020, 59, 0538.
- 5J. K. Edwards, G. J. Hutchings, Angew. Chem., Int. Ed. 2008, 47, 9192.
- 6E. Jung, H. Shin, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. H. Antink, S. Park, K. S. Lee, S. P. Cho, J. S. Yoo, Y. E. Sung, T. Hyeon, Nat. Mater. 2020, 19, 436.
- 7H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang, B. D. McCloskey, Nat. Catal. 2018, 1, 282.
- 8K. Otsuka, I. Yamanaka, Electrochim. Acta. 1990, 35, 319.
- 9J. Gao, H. Yang, X. Huang, S. Hung, W. Cai, C. Jia, S. Miao, H. Chen, X. Yang, Y. Huan, T. Zhang, B. Liu, Chem. 2020, 6, 658.
- 10C. Tang, Y. Jiao, B. Shi, J. N. Liu, Z. Xie, X. Chen, Q. Zhang, S. Z. Qiao, Angew. Chem., Int. Ed. 2020, 59, 9171.
- 11J. Zhang, H. Yang, J. Gao, S. Xi, W. Cai, J. Zhang, P. Cui, B. Liu, Carbon Energy. 2020, 2, 276.
- 12X. Song, N. Li, H. Zhang, L. Wang, Y. Yan, H. Wang, L. Wang, Z. Bian, ACS Appl. Mater. Interfaces. 2020, 12, 17519.
- 13Z. Song, Y. N. Zhu, H. Liu, M. N. Banis, L. Zhang, J. Li, K. Doyle-Davis, R. Li, T. K. Sham, L. Yang, A. Young, G. A. Botton, L. M. Liu, X. Sun, Small. 2020, 16, 2003096.
- 14J. Zhang, C. Liu, B. Zhang, Small Methods. 2019, 3, 1800481.
- 15X. Wang, S. Qiu, J. Feng, Y. Tong, F. Zhou, Q. Li, L. Song, S. Chen, K. H. Wu, P. Su, S. Ye, F. Hou, S. X. Dou, H. K. Liu, G. Q. Lu, C. Sun, J. Liu, J. Liang, Adv. Mater. 2020, 32, 2004382.
- 16J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji, H. Lan, H. Liu, J. Qu, Carbon. 2020, 163, 154.
- 17T. P. Fellinger, F. Hasché, P. Strasser, M. Antonietti, J. Am. Chem. Soc. 2012, 134, 4072.
- 18T. I. Singh, G. Rajeshkhanna, U. N. Pan, T. Kshetri, H. Lin, N. H. Kim, J. H. Lee, Small. 2021, 17, 2101312.
- 19S. Liu, J. Zhou, H. Song, Small. 2018, 14, 1703548.
- 20J. Liang, X. Du, C. Gibson, X. W. Du, S. Z. Qiao, Adv. Mater. 2013, 25, 6226.
- 21J. Liang, R. F. Zhou, X. M. Chen, Y. H. Tang, S. Z. Qiao, Adv. Mater. 2014, 26, 6074.
- 22J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2012, 51, 11664.
10.1002/ange.201206720 Google Scholar
- 23D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science. 2016, 351, 361.
- 24Z. Bao, J. Zhao, S. Zhang, L. Ding, X. Peng, G. Wang, Z. Zhao, X. Zhong, Z. Yao, J. Wang, J. Mater. Chem. A. 2022, 10, 4749.
- 25L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou, H. Xu, S. Z. Qiao, Adv. Energy Mater. 2020, 10, 2000789.
- 26W. Peng, J. Liu, X. Liu, L. Wang, L. Yin, H. Tan, F. Hou, J. Liang, Nat. Commun. 2023, 14,
- 27D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
- 28L. Liao, Y. Zhao, H. Zhou, D. Li, Y. Qi, Y. Zhang, Y. Sun, Q. Zhou, F. Yu, Small. 2022, 18, 2203171.
- 29H. Wang, P. Yang, X. Sun, W. Xiao, X. Wang, M. Tian, G. Xu, Z. Li, Y. Zhang, F. Liu, J. Energy Chem. 2023, 87, 286.
- 30J. Liu, Y. Zhang, L. Zhang, F. Xie, A. Vasileff, S. Z. Qiao, Adv. Mater. 2019, 31, 1901261.
- 31D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado, L. Nasi, M. Bevilacqua, C. Tavagnacco, F. Vizza, M. Prato, P. Fornasiero, Chem. 2018, 4, 106.
- 32T. Xing, Y. Zheng, L. H. Li, B. C. C. Cowie, D. Gunzelmann, S. Z. Qiao, S. Ming, Y. Chen, ACS Nano. 2014, 8, 6856.
- 33S. Haldar, D. Rase, P. Shekhar, C. Jain, C. P. Vinod, E. Zhang, L. Shupletsov, S. Kaskel, R. Vaidhyanathan, Adv. Energy Mater. 2022, 12, 2200754.
- 34Y. Zhang, Z. Cao, S. Liu, Z. Du, Y. Cui, J. Gu, Y. Shi, B. Li, S. Yang, Adv. Energy Mater. 2022, 12, 2103979.
- 35K. Jiang, S. Back, A. J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J. K. Nørskov, S. Siahrostami, H. Wang, Nat. Commun. 2019, 10, 3997.
- 36C. Tang, L. Chen, H. Li, L. Li, Y. Jiao, Y. Zheng, H. Xu, K. Davey, S. Z. Qiao, J. Am. Chem. Soc. 2021, 143, 7819.
- 37W. K. Ford, C. B. Duke, W. R. Salaneck, J Chem. Phy. 1982, 77, 5030.
- 38C. Qi, H. Yang, Z. Sun, H. Wang, N. Xu, G. Zhu, L. Wang, W. Jiang, X. Yu, X. Li, Q. Xiao, P. Qiu, W. Luo, Angew. Chem. Int. Ed. 2023, 135, e202308344.
10.1002/ange.202308344 Google Scholar
- 39M. Cai, Q. Zhu, X. Wang, Z. Shao, L. Yao, H. Zeng, X. Wu, J. Chen, K. Huang, S. Feng, Adv. Mater. 2023, 35, 2209338.
- 40S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L. Stephens, J. Rossmeisl, Nat. Mater. 2013, 12, 1137.
- 41B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71.
- 42S. Nayak, I. J. McPherson, K. A. Vincent, Angew. Chem., Int. Ed. 2018, 130, 13037.
10.1002/ange.201804978 Google Scholar
- 43M. H. Hansen, A. Nilsson, J. Rossmeisl, Phys. Chem. Chem. Phys. 2017, 19, 23505.
- 44M. Sprik, G. Ciccotti, J Chem. Phy. 1998, 109, 7737.
- 45Y. Xia, X. Zhao, C. Xia, Z. Y. Wu, P. Zhu, J. Y. Kim, X. Bai, G. Gao, Y. Hu, J. Zhong, Y. Liu, H. Wang, Nat. Commun. 2021, 12, 4225.
- 46M. Xie, F. Dai, H. Guo, P. Du, X. Xu, J. Liu, Z. Zhang, X. Lu, Adv. Energy Mater. 2023, 13, 2203032.
- 47J. K. Nørskov, T. Bligaard1, A. Logadottir1, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J Electrochem. Soc. 2005, 152, J23.
- 48Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y.u Han, Y. Chen, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2016, 138, 16174.
- 49J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H. A. Gasteiger, Energy Environ. Sci. 2014, 7, 2255.
- 50W. Xu, G. Fan, S. Zhu, Y. Liang, Z. Cui, Z. Li, H. Jiang, S. Wu, F. Cheng, Adv. Funct. Mater. 2021, 31, 2107333.
- 51S. Shen, Z. Lin, K. Song, Z. Wang, L. Huang, L. Yan, F. Meng, Q. Zhang, L. Gu, W. Zhong, Angew. Chem., Int. Ed. 2021, 60, 12360.