Semi-Ionic F Modified N-Doped Porous Carbon Implanted with Ruthenium Nanoclusters toward Highly Efficient pH-Universal Hydrogen Generation
Jian Guo
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorCorresponding Author
Rui Ding
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
E-mail: [email protected]
Search for more papers by this authorYi Li
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorJinmei Xie
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorQi Fang
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorMiao Yan
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorYuzhen Zhang
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorZiyang Yan
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorZhiqiang Chen
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorYuming He
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorXiujuan Sun
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorEnhui Liu
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorJian Guo
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorCorresponding Author
Rui Ding
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
E-mail: [email protected]
Search for more papers by this authorYi Li
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorJinmei Xie
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorQi Fang
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorMiao Yan
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorYuzhen Zhang
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorZiyang Yan
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorZhiqiang Chen
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorYuming He
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorXiujuan Sun
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorEnhui Liu
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105 P. R. China
Search for more papers by this authorAbstract
Developing high electroactivity ruthenium (Ru)-based electrocatalysts for pH-universal hydrogen evolution reaction (HER) is challenging due to the strong bonding strengths of key Ru─H/Ru─OH intermediates and sluggish water dissociation rates on active Ru sites. Herein, a semi-ionic F-modified N-doped porous carbon implanted with ruthenium nanoclusters (Ru/FNPC) is introduced by a hydrogel sealing-pyrolying-etching strategy toward highly efficient pH-universal hydrogen generation. Benefiting from the synergistic effects between Ru nanoclusters (Ru NCs) and hierarchically F, N-codoped porous carbon support, such synthesized catalyst displays exceptional HER reactivity and durability at all pH levels. The optimal 8Ru/FNPC affords ultralow overpotentials of 17.8, 71.2, and 53.8 mV at the current density of 10 mA cm−2 in alkaline, neutral, and acidic media, respectively. Density functional theory (DFT) calculations elucidate that the F-doped substrate to support Ru NCs weakens the adsorption energies of H and OH on Ru sites and reduces the energy barriers of elementary steps for HER, thus enhancing the intrinsic activity of Ru sites and accelerating the HER kinetics. This work provides new perspectives for the design of advanced electrocatalysts by porous carbon substrate implanted with ultrafine metal NCs for energy conversion applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202403151-sup-0001-SuppMat.pdf19.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) L. Schlapbach, A. Zuttel, Nature 2001, 414, 353; b) Y. Dang, T. Wu, H. Tan, J. Wang, C. Cui, P. Kerns, W. Zhao, L. Posada, L. Wen, S. L. Suib, Energy Environ. Sci. 2021, 14, 5433.
- 2a) G. Zhao, K. Rui, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1803291; b) J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao, M. Ni, ACS Catal. 2019, 9, 9973; c) X.-L. Liu, Y.-C. Jiang, J.-T. Huang, W. Zhong, B. He, P.-J. Jin, Y. Chen, Carbon Energy 2023, 5, e367.
- 3a) Z. Li, W. Wang, Q. Qian, Y. Zhu, Y. Feng, Y. Zhang, H. Zhang, M. Cheng, G. Zhang, eScience 2022, 2, 416; b) J. N. Hansen, H. Prats, K. K. Toudahl, N. Mørch Secher, K. Chan, J. Kibsgaard, I. Chorkendorff, ACS Energy Lett. 2021, 6, 1175.
- 4a) Z.-X. Ge, Y. Ding, T.-J. Wang, F. Shi, P.-J. Jin, P. Chen, B. He, S.-B. Yin, Y. Chen, J. Energy Chem. 2023, 77, 209; b) Z. Zeng, S. Kuespert, S. E. Balaghi, H. E. M. Hussein, N. Ortlieb, M. Knaebbeler-Buss, P. Huegenell, S. Pollitt, N. Hug, J. Melke, A. Fischer, Small 2023, 19, 220585.
- 5a) S. Yuan, Z. H. Pu, H. Zhou, J. Yu, I. S. Amiinu, J. W. Zhu, Q. R. Liang, J. L. Yang, D. P. He, Z. Y. Hu, G. Van Tendeloo, S. C. Mu, Nano Energy 2019, 59, 472; b) P. Prabhu, J.-M. Lee, Chem. Soc. Rev. 2021, 50, 6700.
- 6a) J. Mahmood, F. Li, S.-M. Jung, M. S. Okyay, I. Ahmad, S.-J. Kim, N. Park, H. Y. Jeong, J.-B. Baek, Nat. Nanotechnol. 2017, 12, 441; b) A. Eftekhari, Int. J. Hydrogen Energy 2017, 42, 11053.
- 7a) Q. He, Y. Z. Zhou, H. W. Shou, X. Y. Wang, P. J. Zhang, W. J. Xu, S. C. Qiao, C. A. Q. Wu, H. J. Liu, D. B. Liu, S. M. Chen, R. Long, Z. M. Qi, X. J. Wu, L. Song, Adv. Mater. 2022, 34, 2110604; b) W. Sheng, M. Myint, J. G. Chen, Y. Yan, Energy Environ. Sci. 2013, 6, 1509.
- 8a) Y. Zuo, S. Bellani, G. Saleh, M. Ferri, D. V. Shinde, M. I. Zappia, J. Buha, R. Brescia, M. Prato, R. Pascazio, A. Annamalai, D. O. de Souza, L. De Trizio, I. Infante, F. Bonaccorso, L. Manna, J. Am. Chem. Soc. 2023, 145, 21419; b) I. T. McCrum, M. T. M. Koper, Nat. Energy 2020, 5, 891.
- 9a) X. L. Fan, C. Liu, M. Y. Wu, B. X. Gao, L. Y. Zheng, Y. H. Zhang, H. B. Zhang, Q. S. Gao, X. M. Cao, Y. Tang, Appl. Catal., B 2022, 318, 121867; b) D. Yang, J.-H. Yang, Y.-P. Yang, Z.-Y. Liu, Appl. Catal., B 2023, 326, 122402.
- 10a) Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang, S. Lu, Angew. Chem., Int. Ed. 2020, 59, 1718; b) X. Qin, L. Zhang, G.-L. Xu, S. Zhu, Q. Wang, M. Gu, X. Zhang, C. Sun, P. B. Balbuena, K. Amine, M. Shao, ACS Catal. 2019, 9, 9614.
- 11a) Z. Pu, I. S. Amiinu, Z. Kou, W. Li, S. Mu, Angew. Chem., Int. Ed. 2017, 56, 11559; b) J. Tang, B. Wang, Y. Zhang, X. Zhang, Q. Shen, J. Qin, S. Xue, X. Guo, C. Du, J. Chen, J. Mater. Chem. A 2022, 10, 4181.
- 12M. Gao, Z. Wang, S. Sun, D. Jiang, W. Wei, M. Chen, J. Alloys Compd. 2021, 864, 158174.
- 13a) C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, Y. Li, X. Lu, R. Amal, C. Zhao, Adv. Mater. 2022, 34, 2110103; b) H. B. Zhang, W. Zhou, X. F. Lu, T. Chen, X. W. Lou, Adv. Energy Mater. 2020, 10, 2000882.
- 14a) C. H. Chen, D. Y. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, X. W. Du, Adv. Energy Mater. 2019, 9, 1803913; b) J. Mao, C.-T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 4958; c) X. Guo, X. Wan, Q. Liu, Y. Li, W. Li, J. Shui, eScience 2022, 2, 304.
- 15a) C. Li, H. Jang, S. G. Liu, M. G. Kim, L. Q. Hou, X. E. Liu, J. Cho, Adv. Energy Mater. 2022, 12, 2200029; b) W. Q. Li, H. Zhang, K. Zhang, W. X. Hu, Z. Z. Cheng, H. P. Chen, X. Feng, T. Peng, Z. K. Kou, Appl. Catal., B 2022, 306, 121095; c) J. Liang, Q. Liu, T. Li, Y. Luo, S. Lu, X. Shi, F. Zhang, A. M. Asiri, X. Sun, Green Chem. 2021, 23, 2834; d) B. Jiang, Y. Guo, F. Sun, S. Wang, Y. Kang, X. Xu, J. Zhao, J. You, M. Eguchi, Y. Yamauchi, H. Li, ACS Nano 2023, 17, 13017.
- 16a) Y. L. Wu, X. F. Li, Y. S. Wei, Z. M. Fu, W. B. Wei, X. T. Wu, Q. L. Zhu, Q. Xu, Adv. Mater. 2021, 33, 2006965; b) P. Prabhu, J.-M. Lee, Chem. Catal. 2023, 3, 100621; c) X. X. Huang, R. H. Lu, Y. P. Cen, D. C. Wang, S. Jin, W. X. Chen, I. Geoffrey, N. Waterhouse, Z. Y. Wang, S. B. Tian, X. M. Sun, Nano Res. 2023, 16, 9073; d) Q. Xue, Z. Wang, Y. Ding, F. Li, Y. Chen, Chin. J. Catal. 2023, 45, 6.
- 17V.-H. Do, J.-M. Lee, Chem. Soc. Rev. 2024, 53, 2693.
- 18a) T. T. Gao, X. M. Tang, X. Q. Li, S. W. Wu, S. M. Yu, P. P. Li, D. Xiao, Z. Y. Jin, ACS Catal. 2023, 13, 49; b) L. Zeng, Z. Zhao, Q. Huang, C. Zhou, W. Chen, K. Wang, M. Li, F. Lin, H. Luo, Y. Gu, L. Li, S. Zhang, F. Lv, G. Lu, M. Luo, S. Guo, J. Am. Chem. Soc. 2023, 145, 21432; c) P. Prabhu, V.-H. Do, T. Yoshida, Y. Zhou, H. Ariga-Miwa, T. Kaneko, T. Uruga, Y. Iwasawa, J.-M. Lee, ACS Nano 2024, 18, 9942.
- 19a) H. Guo, D.-H. Si, H.-J. Zhu, Q.-X. Li, Y.-B. Huang, R. Cao, eScience 2022, 2, 295; b) D. H. Kweon, M. S. Okyay, S. J. Kim, J. P. Jeon, H. J. Noh, N. Park, J. Mahmood, J. B. Baek, Nat. Commun. 2020, 11, 1278.
- 20a) K. Tu, D. Tranca, F. Rodriguez-Hernandez, K. Jiang, S. Huang, Q. Zheng, M.-X. Chen, C. Lu, Y. Su, Z. Chen, H. Mao, C. Yang, J. Jiang, H.-W. Liang, X. Zhuang, Adv. Mater. 2020, 32, 2005433; b) X. Wang, M. Yu, X. Feng, eScience 2023, 3, 100141; c) X. Z. Sun, X. Y. Gao, J. Chen, X. Wang, H. X. Chang, B. Li, D. M. Song, J. Li, H. S. Li, N. Wang, ACS Appl. Mater. Interfaces 2020, 12, 48591; d) D. Viet-Hung, J.-M. Lee, ACS Nano 2022, 16, 17847.
- 21P. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, Adv. Energy Mater. 2018, 8, 1702434.
- 22Z. Jiang, S. Song, X. Zheng, X. Liang, Z. Li, H. Gu, Z. Li, Y. Wang, S. Liu, W. Chen, D. Wang, Y. Li, J. Am. Chem. Soc. 2022, 144, 19619.
- 23a) G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B.-A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu, J.-N. Zhang, Nat. Commun. 2021, 12, 1734; b) Y.-F. Huang, R. Ding, D.-F. Ying, Y.-X. Huang, T. Yan, C.-N. Tan, X.-J. Sun, E.-H. Liu, Rare Met. 2022, 41, 2491.
- 24H. An, Y. Li, Y. Gao, C. Cao, J. Han, Y. Feng, W. Feng, Carbon 2017, 116, 338.
- 25a) H. An, Y. Li, P. Long, Y. Gao, C. Qin, C. Cao, Y. Feng, W. Feng, J. Power Sources 2016, 312, 146; b) Y. Liu, Q. Li, X. Guo, X. Kong, J. Ke, M. Chi, Q. Li, Z. Geng, J. Zeng, Adv. Mater. 2020, 32, 1907690.
- 26Y. Q. Feng, W. H. Feng, J. Wan, J. S. Chen, H. Wang, S. M. Li, T. M. Luo, Y. Z. Hu, C. K. Yuan, L. Y. Cao, L. L. Feng, J. Li, R. Wen, J. F. Huang, Appl. Catal., B 2022, 307, 121193.
- 27Y. Zheng, B. Zhang, T. Ma, R. Yan, W. Geng, Z. Zeng, Y. Zhang, S. Li, Small 2024, 20, 2307405.
- 28a) Z. Zhu, Z. Li, J. Wang, R. Li, H. Chen, Y. Li, J. S. Chen, R. Wu, Z. Wei, eScience 2022, 2, 445; b) L. Cui, K. Fan, L. Zong, F. Lu, M. Zhou, B. Li, L. Zhang, L. Feng, X. Li, Y. Chen, L. Wang, Energy Storage Mater. 2022, 44, 469.
- 29K. Ham, D. Shin, J. Lee, ChemSusChem 2020, 13, 1751.
- 30a) Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 2016, 138, 16174; b) X. Chen, I. T. McCrum, K. A. Schwarz, M. J. Janik, M. T. M. Koper, Angew. Chem., Int. Ed. 2017, 56, 15025.
- 31a) H. Chen, X. Ai, W. Liu, Z. Xie, W. Feng, W. Chen, X. Zou, Angew. Chem., Int. Ed. 2019, 58, 11409; b) H. Song, M. Wu, Z. Tang, J. S. Tse, B. Yang, S. Lu, Angew. Chem., Int. Ed. 2021, 60, 7234.