Field-Directed Motion, Cargo Capture, and Closed-Loop Controlled Navigation of Microellipsoids
Hashir M. Gauri
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
Search for more papers by this authorRuchi Patel
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
Search for more papers by this authorNicholas S. Lombardo
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
Search for more papers by this authorCorresponding Author
Michael A. Bevan
Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bhuvnesh Bharti
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorHashir M. Gauri
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
Search for more papers by this authorRuchi Patel
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
Search for more papers by this authorNicholas S. Lombardo
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
Search for more papers by this authorCorresponding Author
Michael A. Bevan
Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Bhuvnesh Bharti
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Microrobots have the potential for diverse applications, including targeted drug delivery and minimally invasive surgery. Despite advancements in microrobot design and actuation strategies, achieving precise control over their motion remains challenging due to the dominance of viscous drag, system disturbances, physicochemical heterogeneities, and stochastic Brownian forces. Here, a precise control over the interfacial motion of model microellipsoids is demonstrated using time-varying rotating magnetic fields. The impacts of microellipsoid aspect ratio, field characteristics, and magnetic properties of the medium and the particle on the motion are investigated. The role of mobile micro-vortices generated is highlighted by rotating microellipsoids in capturing, transporting, and releasing cargo objects. Furthermore, an approach is presented for controlled navigation through mazes based on real-time particle and obstacle sensing, path planning, and magnetic field actuation without human intervention. The study introduces a mechanism of directing motion of microparticles using rotating magnetic fields, and a control scheme for precise navigation and delivery of micron-sized cargo using simple microellipsoids as microbots.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202403007-sup-0001-SuppMat.pdf4.3 MB | Supporting Information |
smll202403007-sup-0002-MovieS1.mp42.3 MB | Supplemental Movie 1 |
smll202403007-sup-0003-MovieS2.mp42.2 MB | Supplemental Movie 2 |
smll202403007-sup-0004-MovieS3.mp43.9 MB | Supplemental Movie 3 |
smll202403007-sup-0005-MovieS4.mp42.5 MB | Supplemental Movie 4 |
smll202403007-sup-0006-MovieS5.mp44.7 MB | Supplemental Movie 5 |
smll202403007-sup-0007-MovieS6.mp45.6 MB | Supplemental Movie 6 |
smll202403007-sup-0008-MovieS7.mp47 MB | Supplemental Movie 7 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Ceylan, J. Giltinan, K. Kozielski, M. Sitti, Lab Chip 2017, 17, 1705.
- 2B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott, Annu. Rev. Biomed. Eng. 2010, 12, 55.
- 3Y. Li, Z. Cong, L. Xie, S. Tang, C. Ren, X. Peng, D. Tang, F. Wan, H. Han, X. Zhang, Small 2023, 19, 2301489.
- 4Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li, S.-Y. Yang, L. V. Wang, W. Gao, Science Rob. 2019, 4, aax0613.
- 5C. K. Schmidt, M. Medina-Sánchez, R. J. Edmondson, O. G. Schmidt, Nat. Commun. 2020, 11, 5618.
- 6D. Jang, J. Jeong, H. Song, S. K. Chung, J. Micromech. Microeng. 2019, 29, 053002.
- 7A. Shi, H. Wu, D. K. Schwartz, Sci. Adv. 2023, 9, adj2208.
- 8X. Wang, Y. Yang, S. Roh, S. Hormozi, N. C. Gianneschi, N. L. Abbott, Adv. Mater. 2024, 36, 2311311.
- 9V. Garcia-Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay, A. Pourazary, A. Katzenberg, W. Gao, Y. Shen, J. Wang, ACS Nano 2013, 7, 9232.
- 10R. D. Baker, T. Montenegro-Johnson, A. D. Sediako, M. J. Thomson, A. Sen, E. Lauga, I. S. Aranson, Nat. Commun. 2019, 10, 4932.
- 11Y. Zhang, L. Zhang, L. Yang, C. I. Vong, K. F. Chan, W. K. K. Wu, T. N. Y. Kwong, N. W. S. Lo, M. Ip, S. H. Wong, Sci. Adv. 2019, 5, aau9650.
- 12R. Nauber, S. R. Goudu, M. Goeckenjan, M. Bornhäuser, C. Ribeiro, M. Medina-Sánchez, Nat. Commun. 2023, 14, 728.
- 13G. A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation and Control, MIT press, Cambridge, MA 2005.
- 14F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani, J. Wang, Chem. Rev. 2021, 122, 5365.
- 15J. Jiang, Z. Yang, A. Ferreira, L. Zhang, Adv. Intell. Syst. 2022, 4, 2100279.
- 16Z. Li, K. Wang, C. Hou, C. Li, F. Zhang, W. Ren, L. Dong, J. Zhao, Microsyst. Nanoeng. 2023, 9, 102.
- 17T. Yao, Ž. Kos, Q. X. Zhang, Y. Luo, F. Serra, E. B. Steager, M. Ravnik, K. J. Stebe, Adv. Funct. Mater. 2022, 32, 2205546.
- 18J. Jiang, Z. Yang, A. Ferreira, L. Zhang, Adv. Intell. Syst. 2022, 4, 2100279.
- 19E. M. Purcell, Am. J. Phys. 1977, 45, 3.
- 20T. Qiu, T.-C. Lee, A. G. Mark, K. I. Morozov, R. Münster, O. Mierka, S. Turek, A. M. Leshansky, P. Fischer, Nat. Commun. 2014, 5, 5119.
- 21A. Ghosh, P. Fischer, Nano Lett. 2009, 9, 2243.
- 22M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, C. Hierold, Biomed. Microdevices 2013, 15, 997.
- 23P. Mandal, G. Patil, H. Kakoty, A. Ghosh, Acc. Chem. Res. 2018, 51, 2689.
- 24T. Tasci, P. Herson, K. Neeves, D. Marr, Nat. Commun. 2016, 7, 10225.
- 25F. Martinez-Pedrero, A. Ortiz-Ambriz, I. Pagonabarraga, P. Tierno, Phys. Rev. Lett. 2015, 115, 138301.
- 26J. Vyskočil, C. C. Mayorga-Martinez, E. Jablonská, F. Novotný, T. Ruml, M. Pumera, ACS Nano 2020, 14, 8247.
- 27H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang, L. Dong, Q. He, Sci. Rob. 2019, 4, aav8006.
- 28T. Yang, A. Tomaka, T. O. Tasci, K. B. Neeves, N. Wu, D. W. M. Marr, Sci. Rob. 2019, 4, aaw9525.
10.1126/scirobotics.aaw9525 Google Scholar
- 29S. T. Chang, V. N. Paunov, D. N. Petsev, O. D. Velev, Nat. Mater. 2007, 6, 235.
- 30G. Loget, A. Kuhn, Nat. Commun. 2011, 2, 535.
- 31K. Dhatt-Gauthier, D. Livitz, Y. Wu, K. J. M. Bishop, JACS Au 2023, 3, 611.
- 32J. G. Lee, A. M. Brooks, W. A. Shelton, K. J. M. Bishop, B. Bharti, Nat. Commun. 2019, 10, 2575.
- 33J. Cui, T. Y. Huang, Z. Luo, P. Testa, H. Gu, X. Z. Chen, B. J. Nelson, L. J. Heyderman, Nature 2019, 575, 164.
- 34Y. Dou, C. A. Cartier, W. Fei, S. Pandey, S. Razavi, I. Kretzschmar, K. J. Bishop, Langmuir 2016, 32, 13167.
- 35J. Yu, D. Jin, K. F. Chan, Q. Wang, K. Yuan, L. Zhang, Nat. Commun. 2019, 10, 5631.
- 36Y. Yang, M. A. Bevan, Sci. Adv. 2020, 6, aay7679.
10.1126/sciadv.aay7679 Google Scholar
- 37S. Das, E. B. Steager, M. A. Hsieh, K. J. Stebe, V. Kumar, J. Micro-Bio Rob. 2018, 14, 25.
- 38A. A. Harraq, B. D. Choudhury, B. Bharti, Langmuir 2022, 38, 3001.
- 39A. Spatafora-Salazar, D. M. Lobmeyer, L. H. Cunha, K. Joshi, S. L. Biswal, Soft Matter 2021, 17, 1120.
- 40H. Zhou, C. C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Chem. Rev. 2021, 121, 4999.
- 41X. Fan, M. Sun, Z. Lin, J. Song, Q. He, L. Sun, H. Xie, IEEE Trans. Nanotechnol. 2018, 17, 666.
- 42K. Xu, Y. Yang, B. Li, Adv. Intell. Syst. 2021, 3, 2100115.
- 43Y. Yang, M. A. Bevan, B. Li, Adv. Intell. Syst. 2022, 4, 2200168.
- 44B. Hartl, M. Hübl, G. Kahl, A. Zöttl, Proc. Natl. Acad. Sci. USA 2021, 118, 2019683118.
10.1073/pnas.2019683118 Google Scholar
- 45J. A. Champion, Y. K. Katare, S. Mitragotri, Proc. Natl. Acad. Sci. USA 2007, 104, 11901.
- 46J. G. Lee, A. A. Harraq, K. J. Bishop, B. Bharti, J. Phys. Chem. B 2021, 125, 4232.
- 47T. O. Tasci, P. S. Herson, K. B. Neeves, D. W. M. Marr, Nat. Commun. 2016, 7, 10225.
- 48E. Roth, C. Zimmermann, D. Disharoon, T. Tasci, D. Marr, K. Neeves, Rev. Sci. Instrum. 2020, 91, 093701.
- 49T. B. Jones, Electromechanics of particles, Cambridge University Press, Cambridge 1995.
10.1017/CBO9780511574498 Google Scholar
- 50A. A. Harraq, J. Lee, B. Bharti, Sci. Adv. 2020, 6, aba5337.
10.1126/sciadv.aba5337 Google Scholar
- 51A. A. Harraq, M. Feng, H. M. Gauri, R. Devireddy, A. Gupta, Q. Sun, B. Bharti, ACS Appl. Mater. Interfaces 2024, 16, 173339.
10.1021/acsami.4c02325 Google Scholar
- 52A. T. Skjeltorp, Phys. Rev. Lett. 1983, 51, 2306.
- 53A. A. Harraq, A. A. Hymel, E. Lin, T. M. Truskett, B. Bharti, Commun. Chem. 2022, 5, 72.
- 54C. Zimmermann, P. Herson, K. Neeves, D. Marr, Sci. Rep. 2022, 12, 5078.
- 55Ö. B. Adıgüzel, K. Atalık, Appl. Math. Modell. 2017, 42, 161.
10.1016/j.apm.2016.10.014 Google Scholar
- 56B. Yigit, Y. Alapan, M. Sitti, Adv. Sci. 2019, 6, 1801837.
- 57Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, A. G. Yodh, Science 2009, 314, 626.
10.1126/science.1130146 Google Scholar
- 58F. Vereda, J. de Vicente, R. Hidalgo-Álvarez, ChemPhysChem 2009, 10, 1165.
- 59A. C. Coughlan, M. A. Bevan, Phys. Rev. E 2016, 94, 042613.
- 60J. L. Bitter, Y. Yang, G. Duncan, H. Fairbrother, M. A. Bevan, Langmuir 2017, 33, 9034.
- 61A. C. H. Coughlan, M. A. Bevan, Phys. Rev. E 2016, 94, 042613.
- 62P. Tierno, J. Claret, F. Sagués, A. Cēbers, Phys. Rev. E 2009, 79, 021501.
- 63Y. Yang, M. A. Bevan, J. Chem. Phys. 2017, 147, 054902.
- 64Y. Gao, B. Sprinkle, E. Springer, D. W. Marr, N. Wu, Sci. Adv. 2023, 9, adg0919.
10.1126/sciadv.adg0919 Google Scholar
- 65S. Ota, Y. Takemura, J. Phys. Chem. C 2019, 123, 28859.
- 66E. Stamhuis, W. Thielicke, J. Open Res. Software 2014, 2, 30.
- 67X. Y. Wang, B. Sprinkle, H. K. Bisoyi, T. Yang, L. X. Chen, S. Huang, Q. Li, Proc. Natl. Acad. Sci. USA 2023, 120, 2304685120.
10.1073/pnas.2304685120 Google Scholar
- 68Z. Ye, E. Diller, M. Sitti, J. Appl. Phys. 2012, 112, 064912.
- 69T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, B. J. Nelson, Nano Lett. 2012, 12, 156.
- 70Z. Ye, M. Sitti, Lab Chip 2014, 14, 2177.
- 71X. Wang, B. Sprinkle, H. K. Bisoyi, T. Yang, L. Chen, S. Huang, Q. Li, Proc. Natl. Acad. Sci. USA 2023, 120, 2304685120.
10.1073/pnas.2304685120 Google Scholar
- 72K. Villa, L. Krejčová, F. Novotný, Z. Heger, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2018, 28, 1804343.
- 73M. Medina-Sánchez, L. Schwarz, A. K. Meyer, F. Hebenstreit, O. G. Schmidt, Nano Lett. 2016, 16, 555.
- 74Z. Lin, X. Fan, M. Sun, C. Gao, Q. He, H. Xie, ACS Nano 2018, 12, 2539.
- 75Z. Wu, Y. Chen, D. Mukasa, O. S. Pak, W. Gao, Chem. Soc. Rev. 2020, 49, 8088.
- 76P. Sharan, A. Nsamela, S. C. Lesher-Pérez, J. Simmchen, Small 2021, 17, 2007403.
- 77Y. Yang, M. A. Bevan, B. Li, Adv. Intell. Syst. 2020, 2, 1900106.
- 78Y. Yang, M. A. Bevan, B. Li, Adv. Theory Simul. 2020, 3, 2000034.
- 79Y. Yang, M. A. Bevan, ACS Nano 2018, 12, 10712.
- 80Y. Yang, M. A. Bevan, Sci. Adv. 2020, 6, aay7679.
10.1126/sciadv.aay7679 Google Scholar
- 81D. Ershov, M.-S. Phan, J. W. Pylvänäinen, S. U. Rigaud, L. Le Blanc, A. Charles-Orszag, J. R. Conway, R. F. Laine, N. H. Roy, D. Bonazzi, Nat. Methods 2022, 19, 829.
- 82C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 2012, 9, 671.