Tailoring Stress-Relieved Structure for SnSe Toward High Performance Potassium Ion Batteries
Naiqing Ren
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorXiaoying Li
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorLifeng Wang
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorJuntao Si
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorSihan Zeng
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorHuaibing Liu
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorHaiyan He
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorCorresponding Author
Chunhua Chen
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Email: [email protected]
Search for more papers by this authorNaiqing Ren
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorXiaoying Li
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorLifeng Wang
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorJuntao Si
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorSihan Zeng
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorHuaibing Liu
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorHaiyan He
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorCorresponding Author
Chunhua Chen
CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 China
Email: [email protected]
Search for more papers by this authorAbstract
Metal chalcogenides as an ideal family of anode materials demonstrate a high theoretical specific capacity for potassium ion batteries (PIBs), but the huge volume variance and poor cyclic stability hinder their practical applications. In this study, a design of a stress self-adaptive structure with ultrafine SnSe nanoparticles embedded in carbon nanofiber (SnSe@CNF) via the electrospinning technology is presented. Such an architecture delivers a record high specific capacity (272 mAh g−1 at 50 mA g−1) and high-rate performance (125 mAh g−1 at 1 A g−1) as a PIB anode. It is decoded that the fundamental understanding for this great performance is that the ultrafine SnSe particles enhance the full utilization of the active material and achieve stress relief as the stored strain energy from cycling is insufficient to drive crack propagation and thus alleviates the intrinsic chemo-mechanical degradation of metal chalcogenides.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202402845-sup-0001-SuppMat.docx10.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Ma, S. Chong, K. Yao, H. K. Liu, S. X. Dou, W. Huang, Matter 2023, 6, 3220.
- 2R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Adv. Funct. Mater. 2020, 30, 1909486.
- 3J. C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, Adv. Energy Mater. 2017, 7, 1602911.
- 4S. Dhir, S. Wheeler, I. Capone, M. Pasta, Chem 2020, 6, 2442.
- 5M. Jiang, N. Sun, T. Li, J. Yu, R. A. Somoro, M. Jia, B. Xu, Small 2024, 2401478.
10.1002/smll.202401478 Google Scholar
- 6Y. Wei, P. Zhang, S. Zhou, X. Tian, R. A. Soomro, H. Liu, H. Du, B. Xu, Small 2024, 2306541.
10.1002/smll.202306541 Google Scholar
- 7W. Huang, Z. Ma, L. Zhong, K. Luo, W. Li, S. Zhong, D. Yan, Small 2024, 20, 2304690.
- 8T. Bashir, S. Zhou, S. Yang, S. A. Ismail, T. Ali, H. Wang, J. Zhao, L. Gao, Electrochem. Energy Rev. 2023, 6, 5.
- 9H. Qian, X. Li, Q. Chen, W. Liu, Z. Zhao, Z. Ma, Y. Cao, J. Wang, W. Li, K. Xu, K. Zhang, W. Yan, J. Zhang, X. Li, Adv. Funct. Mater. 2023, 34, 2310143.
- 10J. Zhou, Y. Liu, S. Zhang, T. Zhou, Z. Guo, InfoMat 2020, 2, 437.
- 11X. Min, J. Xiao, M. H. Fang, W. Wang, Y. J. Zhao, Y. G. Liu, A. M. Abdelkader, K. Xi, R. V. Kumar, Z. H. Huang, Energy Environ. Sci. 2021, 14, 2186.
- 12L. Ma, Y. Lv, J. Wu, C. Xia, Q. Kang, Y. Zhang, H. Liang, Z. Jin, Nano Res. 2021, 14, 4442.
- 13H. Wu, S. Lu, S. Xu, J. Zhao, Y. Wang, C. Huang, A. Abdelkader, W. A. Wang, K. Xi, Y. Guo, S. Ding, G. Gao, R. V. Kumar, ACS Nano 2021, 15, 2506.
- 14Z. Chen, D. Yin, M. Zhang, Small 2018, 14, 1703818.
- 15X. Yang, Y. Gao, L. Fan, A. M. Rao, J. Zhou, B. Lu, Adv. Energy Mater. 2023, 13, 2302589.
- 16T. Lei, M. Gu, H. Fu, J. Wang, L. Wang, J. Zhou, H. Liu, B. Lu, Chem. Sci. 2023, 14, 2528.
- 17R. Tian, L. Duan, Y. Xu, Y. Man, J. Sun, J. Bao, X. Zhou, Energy Environ. Mater. 2023, 0, 12617.
10.1002/eem2.12617 Google Scholar
- 18Z. Yi, J. Xu, Z. Xu, M. Zhang, Y. He, J. Bao, X. Zhou, J Energy Chem 2021, 60, 241.
- 19M. Wang, Y. Li, S. Yao, J. Cui, L. Ma, N. Mubarak, H. Zhang, S. Ding, J.-K. Kim, Lithium-Ion Batteries 2023, 1, 9370001.
- 20M. Ma, S. Zhang, Y. Yao, H. Wang, H. Huang, R. Xu, J. Wang, X. Zhou, W. Yang, Z. Peng, X. Wu, Y. Hou, Y. Yu, Adv. Mater. 2020, 32, 2000958.
- 21Y. Liu, Q. Deng, Y. Li, Y. Li, W. Zhong, J. Hu, X. Ji, C. Yang, Z. Lin, K. Huang, ACS Nano 2021, 15, 1121.
- 22D. Li, Q. Sun, Y. Zhang, L. Chen, Z. Wang, Z. Liang, P. Si, L. Ci, ChemSusChem 2019, 12, 2689.
- 23H. Liu, Y. He, K. Cao, S. Wang, Y. Jiang, X. Liu, K. J. Huang, Q. S. Jing, L. Jiao, Small 2021, 17, 2008133.
- 24Y. Zhang, S. Wei, Z. Zhao, X. Pei, W. Zhao, J. Wang, X. Du, D. Li, Small 2022, 18, 2107258.
- 25H. He, D. Huang, Q. Gan, J. Hao, S. Liu, Z. Wu, W. K. Pang, B. Johannessen, Y. Tang, J. L. Luo, H. Wang, Z. Guo, ACS Nano 2019, 13, 11843.
- 26S. Geng, T. Zhou, M. Jia, X. Shen, P. Gao, S. Tian, P. Zhou, B. Liu, J. Zhou, S. Zhuo, F. Li, Energy Environ. Sci. 2021, 14, 3184.
- 27L. Fang, J. Xu, S. Sun, B. Lin, Q. Guo, D. Luo, H. Xia, Small 2019, 15, 1804806.
- 28X. Zhu, J. Gao, J. Li, G. Hu, J. Li, G. Zhang, B. Xiang, Sustain. Energy Fuels 2020, 4, 2453.
- 29S. Liang, Z. Yu, T. Ma, H. Shi, Q. Wu, L. Ci, Y. Tong, J. Wang, Z. Xu, ACS Nano 2021, 15, 14697.
- 30H. Shan, J. Qin, J. Wang, H. M. K. Sari, L. Lei, W. Xiao, W. Li, C. Xie, H. Yang, Y. Luo, G. Zhang, X. Li, Adv. Sci. 2022, 9, 2200341.
- 31H. Shan, J. Qin, Y. Ding, H. M. K. Sari, X. Song, W. Liu, Y. Hao, J. Wang, C. Xie, J. Zhang, X. Li, Adv. Mater. 2021, 33, 2102471.
- 32L. Wang, B. Zhang, B. Wang, S. Zeng, M. Zhao, X. Sun, Y. Zhai, L. Xu, Angew. Chem. 2021, 60, 15381.
- 33W. Xiao, P. Shi, Z. Li, C. Xie, J. Qin, H. Yang, J. Wang, W. Li, J. Zhang, X. Li, J Energy Chem 2023, 78, 589.
- 34C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang, G. Cao, M. Zhang, Small 2019, 15, 1804740.
- 35D. Li, L. Dai, X. Ren, F. J. Ji, Q. Sun, Y. M. Zhang, L. J. Ci, Energy Environ. Sci. 2021, 14, 424.
- 36J. Xia, Y. Yuan, H. Yan, J. Liu, Y. Zhang, L. Liu, S. Zhang, W. Li, X. Yang, H. Shu, X. Wang, G. Cao, J. Power Sources 2020, 449, 227559.
- 37S. Gao, N. Wang, S. Li, D. Li, Z. Cui, G. Yue, J. Liu, X. Zhao, L. Jiang, Y. Zhao, Angew. Chem. 2020, 59, 2465.
- 38L. Xu, P. Xiong, L. Zeng, Y. Fang, R. Liu, J. Liu, F. Luo, Q. Chen, M. Wei, Q. Qian, Nanoscale 2019, 11, 16308.
- 39D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li, H. Zhang, Angew. Chem. 2018, 57, 8901.
- 40D.-H. Nam, J. W. Kim, J.-H. Lee, S.-Y. Lee, H.-A. S. Shin, S.-H. Lee, Y.-C. Joo, J. Mater. Chem. A 2015, 3, 11021.
- 41X. Han, Y. Liu, Z. Jia, Y.-C. Chen, J. Wan, N. Weadock, K. J. Gaskell, T. Li, L. Hu, Nano Lett. 2013, 14, 139.
- 42F. C. Marques, R. G. Lacerda, A. Champi, V. Stolojan, D. C. Cox, S. R. P. Silva, Appl. Phys. Lett. 2003, 83, 3099.
- 43Q. Hu, J. Liao, X. He, S. Wang, L.-N. Xiao, X. Ding, C.-H. Chen, J. Mater. Chem. A 2019, 7, 4660.
- 44B. Li, C. Wang, Z. Qin, C. Luan, C. Zhan, L. Li, R. Lv, W. Shen, Z.-H. Huang, Lithium-Ion Batteries 2023, 1, 9370012.
- 45B.-S. Lee, H.-S. Yang, H. Jung, S. K. Mah, S. Kwon, J.-H. Park, K. H. Lee, W.-R. Yu, S.-G. Doo, Eur. Polym. J. 2015, 70, 392.
- 46Z. Tang, S. Zhou, Y. Huang, H. Wang, R. Zhang, Q. Wang, D. Sun, Y. Tang, H. Wang, Electrochem. Energy Rev. 2023, 6, 8.
- 47N. Ren, L. Wang, J. Dong, K. Cao, Y. Li, F. Chen, J. Xiao, B. Pan, C. Chen, Chem. Eng. J. 2023, 458, 141489.
- 48H. Xie, B. Chen, C. Liu, G. Wu, S. Sui, E. Liu, G. Zhou, C. He, W. Hu, N. Zhao, Energy Storage Mater. 2023, 60, 102830.
- 49V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.