Aggregation-Induced Emissive Feringa-Type Motor: Toward the Dual-Functional Motor in a Single Molecular Aggregation System
Ziwei Jiang
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
Search for more papers by this authorYunan Qin
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
Search for more papers by this authorGuohong Liao
Laboratory for Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Li Liu
Laboratory for Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanling Luo
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Quan Li
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorKun Guo
College of Pharmacy, Southwest Minzu University, Chengdu, 610041 P. R. China
Search for more papers by this authorZiwei Jiang
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
Search for more papers by this authorYunan Qin
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
Search for more papers by this authorGuohong Liao
Laboratory for Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Li Liu
Laboratory for Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanling Luo
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Quan Li
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorKun Guo
College of Pharmacy, Southwest Minzu University, Chengdu, 610041 P. R. China
Search for more papers by this authorAbstract
Aggregation-induced emission (AIE)allows tunable photoluminescence via the simple regulation of molecular aggregation. The research spurt along this vein has also offered tremendous opportunities for light-responsive artificial molecular machines that are to be fully explored for performing versatile functions. Herein, the study reports a light-driven Feringa-type motor, when in the appropriate aggregation state, not only demonstrates the light-activated rotary motion but emits photons with good quantum yield. A semi-quantitative TD-DFT calculation is also conducted to aid the understanding of the competitive photoluminescence and photoisomerization processes of the motor. Cytotoxicity test shows this motor possesses good biocompatibility, laying a solid foundation for applying it in the bio-environment. The results demonstrated that the engagement of the aggregation-induced emission concept and light-driven Feringa-motor can lead to the discovery of the novel motorized AIEgen, which will further stimulate the rise of more advanced molecular motors capable of executing multi-functionalities.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202402785-sup-0001-SuppMat.docx9.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Wang, Q. Li, Chem. Soc. Rev. 2018, 47, 1044.
- 2B. L. Feringa, Angew. Chem., Int. Ed. 2017, 56, 11060.
- 3a) D. R. S. Pooler, A. S. Lubbe, S. Crespi, B. L. Feringa, Chem. Sci. 2021, 12, 14964. b) C. Zhang, Z. Jiang, Y. Qin, Y. Fu, Q. Li, Y. Zhang, M.-H. Zeng, Mater. Today Chem. 2022, 26, 101036; c) Z. Zhang, W. Wang, M. O'Hagan, J. Dai, J. Zhang, H. Tian, Angew. Chem., Int. Ed. 2022, 61, e202205758.
- 4a) Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso, I. Kulic, J. T. Foy, N. Giuseppone, Nat. Nanotech. 2015, 10, 161; b) J. T. Foy, Q. Li, A. Goujon, J.-R. Colard-Itté, G. Fuks, E. Moulin, O. Schiffmann, D. Dattler, D. P. Funeriu, N. Giuseppone, Nat. Nanotech. 2017, 12, 540.
- 5a) T. Orlova, F. Lancia, C. Loussert, S. Iamsaard, N. Katsonis, E. Brasselet, Nat. Nanotech. 2018, 13, 304;
b) R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2016, 440, 163;
10.1038/440163a Google Scholarc) R. Lan, J. Sun, C. Shen, R. Huang, Z. Zhang, C. Ma, J. Bao, L. Zhang, L. Wang, D. Yang, H. Yang, Adv. Funct. Mater. 2020, 30, 2000252; d) J. Sun, R. Lan, Y. Gao, M. Wang, W. Zhang, L. Wang, L. Zhang, Z. Yang, H. Yang, Adv. Sci. 2018, 5, 1700613.
- 6a) W. Danowski, T. v. Leeuwen, S. Abdolahzadeh, D. Roke, W. R. Browne, S. J. Wezenberg, B. L. Feringa, Nat. Nanotechnol. 2019, 14, 488; b) F. Castiglioni, W. Danowski, J. Perego, F. K.-C. Leung, P. Sozzani, S. Bracco, S. J. Wezenberg, A. Comotti, B. L. Feringa, Nat. Chem. 2020, 12, 595.
- 7a) V. García-López, F. Chen, L. G. Nilewski, G. Duret, A. Aliyan, A. B. Kolomeisky, J. T. Robinson, G. Wang, R. Pal, J. M. Tour, Nature 2017, 548, 567; b) H. Yang, J. Yi, S. Pang, K. Ye, Z. Ye, Q. Duan, Z. Yan, C. Lian, Y. Yang, L. Zhu, D.-H. Qu, C. Bao, Angew. Chem., Int. Ed. 2022, 61, e202204605.
- 8J. Chen, F. K.-C. Leung, M. C. A. Stuart, T. Kajitani, T. Fukushima, E. v. d. Giessen, B. L. Feringa, Nat. Chem. 2018, 10, 132.
- 9J. Wang, B. L. Feringa, Science 2011, 331, 6023.
- 10a) T. Galbadage, D. Liu, L. B. Alemany, R. Pal, J. M. Tour, R. S. Gunasekera, J. D. Cirillo, ACS Nano 2019, 13, 14377; b) C. A. Orozco, D. Liu, Y. Li, L. B. Alemany, R. Pal, S. Krishnan, J. M. Tour, ACS Appl. Mater. Interfaces 2020, 12, 410; c) D. Liu, V. García-López, R. S. Gunasekera, L. G. Nilewski, L. B. Alemany, A. Aliyan, T. Jin, G. Wang, J. M. Tour, R. Pal, ACS Nano 2019, 13, 6813; d) A. L. Santos, D. Liu, A. K. Reed, A. M. Wyderka, A. v. Venrooy, J. T. Li, V. D. Li, M. Misiura, O. Samoylova, J. L. Beckham, C. Ayala-Orozco, A. B. Kolomeisky, L. B. Alemany, A. Oliver, G. P. Tegos, J. M. Tour, Sci. Adv. 2022, 8, eabm2055; e) Q. Li, J. J. Tan, T. Sun, Trends Chem. 2023, 5, 653.
- 11a) L. Pfeifer, N. V. Hoang, S. Crespi, M. S. Pshenichnikov, B. L. Feringa, Sci. Adv. 2022, 8, eadd0410; b) R. Toyoda, N. V. Hoang, K. Gholamjani Moghaddam, S. Crespi, D. R. S. Pooler, S. Faraji, M. S. Pshenichnikov, B. L. Feringa, Nat. Commun. 2022, 13, 5765.
- 12a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740; b) J. Me, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
- 13a) Y. Tu, Z. Zhao, J. W. Y. Lam, B. Z. Tang, Matter 2021, 4, 338; b) Z. Li, X. Ji, H. Xie, B. Z. Tang, Adv. Mater. 2021, 33, 2100021; c) Y. Zuo, R. T. K. Kwok, J. Sun, J. W. Y. Lam, B. Z. Tang, Macromol. Rapid Commun. 2023, 44, 2300104; d) M.i. M. S. Lee, E. Y. Yu, J. H. C. Chau, J. W. Y. Lam, R. T. K. Kwok, D. Wang, B. Z. Tang, Mater. Chem. Front. 2023, 7, 2973; e) J. Hu, W. Jiang, L. Yuan, C. Duan, Q. Yuan, Z. Long, X. Lou, F. Xia, Aggregate 2021, 2, 48; f) J. Zhang, B. He, Y. Hu, P. Alam, H. Zhang, J. W. Y. Lam, B. Z. Tang, Adv. Mater. 2021, 33, 2008071; g) Y. Hu, L. Barbier, Z. Li, X. Ji, H. L. Blay, D. Hourdet, N. Sanson, J. W. Y. Lam, A. Marcellan, B. Z. Tang, Adv. Mater. 2021, 33, 2101500; h) D. Shimoyama, F. Jäkle, Aggregate 2022, 3, e149.
- 14C. Gao, A. V. Jentzsch, E. Moulin, N. Giuseppone, J. Am. Chem. Soc. 2022, 144, 9845.
- 15Y. Qin, J. Xiong, Q. Li, Y. Zhang, M.-H. Zeng, Chem.-Eur. J. 2022, 28, e202201821.
- 16E. Wang, J. W. Y. Lam, R. Hu, C. Zhang, Y. S. Zhao, B. Z. Tang, J. Mater. Chem. C. 2014, 2, 1801.
- 17a) C. R. Hall, J. Conyard, I. A. Heisler, G. Jones, J. Frost, W. R. Browne, B. L. Feringa, S. R. Meech, J. Am. Chem. Soc. 2017, 139, 7408; b) D. R. S. Pooler, R. Pierron, S. Crespi, R. Costil, L. Pfeifer, J. Léonard, M. Olivucci, B. L. Feringa, Chem. Sci. 2021, 12, 7486.
- 18J. Guan, R. Wei, A. Prlj, J. Peng, K.-H. Lin, J. Liu, H. Han, C. Corminboeuf, D. Zhao, Z. Yu, J. Zheng, Angew. Chem., Int. Ed. 2020, 59, 14903.
- 19S. R. LaPlante, V. Roux, F. Shahout, G. LaPlante, S. Woo, M. M. Denk, S. T. Larda, Y. Ayotte, Nat. Protoc. 2021, 16, 5250.
- 20W. Danowski, T. Leeuwen, S. Abdolahzadeh, D. Roke, W. R. Browne, S. J. Wezenberg, B. L. Feringa, Nat. Nanotechnol. 2019, 14, 488.
- 21a) J. Chen, F. K.-C. Leung, M. C. A. Stuart, T. Kajitani, T. Fukushima, E. Giessen, B. L. Feringa, Nat. Chem. 2018, 10, 132; b) F. K.-C. Leung, T. Kajitani, M. C. A. Stuart, T. Fukushima, B. L. Feringa, Angew. Chem., Int. Ed. 2019, 58, 10985.
- 22a) A. Kazaryan, J. C. M. Kistemaker, L. V. Schäfer, W. R. Browne, B. L. Feringa, M. Filatov, J. Phys. Chem. A. 2010, 114, 5058; b) R. Beekmeyer, M. A. Parkes, L. Ridgwell, J. W. Riley, J. Chen, B. L. Feringa, A. Kerridge, H. H. Fielding, Chem. Sci. 2017, 8, 6141.