Enthralling Anodic Protection by Molybdate on High-Entropy Alloy-Based Electrocatalyst for Sustainable Seawater Oxidation
Sakila Khatun
CSIR – Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, 201002 India
Search for more papers by this authorKoji Shimizu
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8656 Japan
Search for more papers by this authorSantanu Pal
CSIR – Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, 201002 India
Search for more papers by this authorSaikat Nandi
Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076 India
Search for more papers by this authorCorresponding Author
Satoshi Watanabe
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8656 Japan
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Poulomi Roy
CSIR – Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, 201002 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSakila Khatun
CSIR – Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, 201002 India
Search for more papers by this authorKoji Shimizu
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8656 Japan
Search for more papers by this authorSantanu Pal
CSIR – Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, 201002 India
Search for more papers by this authorSaikat Nandi
Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076 India
Search for more papers by this authorCorresponding Author
Satoshi Watanabe
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8656 Japan
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Poulomi Roy
CSIR – Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, 201002 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Efficient and sustainable seawater electrolysis is still limited due to the interference of chloride corrosion at the anode. The designing of suitable electrocatalysts is one of the crucial ways to boost electrocatalytic activity. However, the approach may fall short as achieving high current density often occurs in chlorine evolution reaction (CER)-dominating potential regions. Thereby, apart from developing an OER-active high-entropy alloy-based electrocatalyst, the present study also offers a unique way to protect anode surface under high current density or potential by using MoO42— as an effective inhibitor during seawater oxidation. The wide variation of d-band center of high-entropy alloy-based electrocatalyst allows great oxygen evolution reaction (OER) proficiency exhibiting an overpotential of 230 mV at current density of 20 mA cm−2. Besides, the electrocatalyst demonstrates impressive stability over 500 h at high current density of 1 A cm−2 or at a high oxidation potential of 2.0 V versus RHE in the presence of a molybdate inhibitor. Theoretical and experimental studies reveal MoO42- electrostatically accumulated at anode surface due to higher adsorption ability, thereby creating a protective layer against chlorides without affecting OER.
Conflict of Interest
A part of inventive experimental aspects of this publication have been included in a patent application.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202402720-sup-0001-SuppMat.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Zeyen, M. Victoria, T. Brown, Nat. Commun. 2023, 14, 3743.
- 2X. Kang, F. Yang, Z. Zhang, H. Liu, S. Ge, S. Hu, S. Li, Y. Luo, Q. Yu, Z. Liu, Q. Wang, W. Ren, C. Sun, H. M. Cheng, B. Liu, Nat. Commun. 2023, 14, 3607.
- 3S. Khatun, H. Hirani, P. Roy, J. Mater. Chem. A 2021, 9, 74.
- 4F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, ChemSusChem 2016, 9, 962.
- 5S. Khatun, S. Pal, N. Sinha, C. Das, T. Ahmed, P. Roy, Chem. Commun. 2023, 59, 4578.
- 6T. Ma, W. Xu, B. Li, X. Chen, J. Zhao, S. Wan, K. Jiang, S. Zhang, Z. Wang, Z. Tian, Z. Lu, L. Chen, Angew. Chem. 2021, 60, 22922.
10.1002/ange.202110355 Google Scholar
- 7M. Yu, J. Li, F. Liu, J. Liu, W. Xu, H. Hu, X. Chen, W. Wang, F. Cheng, J Energy Chem 2022, 72, 361.
- 8S. Pal, K. Shimizu, S. Khatun, S. Singha, S. Watanabe, P. Roy, J. Mater. Chem. A 2023, 11, 12151.
- 9F. Dionigi, Z. Zheng, I. Sinev, T. Merzdorf, S. Deshpande, M. B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J. F. D. Araujo, M. Gliech, D. Teschner, J. Zhu, W. X. Li, J. Greeley, B. R. Cuenya, P. Strasser, Nat. Commun. 2020, 11, 2522.
- 10D. Wang, L. Liu, Y. Liu, W. Luo, Y. Xie, T. Xiao, Y. Wang, Z. Song, H. Zhang, X. Wang, ACS Sustainable Chem. Eng. 2023, 11, 16479.
- 11H. Xu, S. J. Xie, C. Lv, J. T. Li, Y. Zhou, S. G. Sun, J. Mater. Chem. A 2023, 11, 10277.
- 12P. Li, Y. Yao, W. Ouyang, Z. Liu, H. Yin, D. Wang, J. Mater. Sci. Technol. 2023, 138, 29.
- 13Z. Chen, K. Huang, B. Zhang, J. Xia, J. Wu, Z. Zhang, Y. Huang, Int. J. Miner., Metall. Mater. 2023, 30, 1922.
- 14G. M. Tomboc, T. Kwon, J. Joo, K. Lee, J. Mater. Chem. A 2020, 8, 14844.
- 15H. Li, J. Lai, Z. Li, L. Wang, Adv. Funct. Mater. 2021, 31, 2106715.
- 16X. Wang, J. Li, Q. Xue, X. Han, C. Xing, Z. Liang, P. Guardia, Y. Zuo, R. Du, L. Balcells, J. Arbiol, J. Llorca, X. Qi, A. Cabot, ACS Nano 2023, 17, 825.
- 17J. Xie, H. Qu, F. Lei, X. Peng, W. Liu, L. Gao, P. Hao, G. Cui, B. Tang, J. Mater. Chem. A 2018, 6, 16121.
- 18S. Khatun, P. Roy, Chem. Commun. 2022, 58, 1104.
- 19H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang, Y. Yu, W. Cai, S. Li, J. Lai, B. Huang, L. Wang, Nat. Commun. 2020, 11, 5437.
- 20Z. Jin, J. Lv, H. Jia, W. Liu, H. Li, Z. Chen, X. Lin, G. Xie, X. Liu, S. Sun, H. J. Qiu, Small 2019, 15, 1904180.
- 21H. Huang, J. Zhao, H. Guo, B. Weng, H. Zhang, R. A. Saha, M. Zhang, F. Lai, Y. Zhou, R. Z. Juan, P. C. Chen, S. Wang, J. A. Steele, F. Zhong, T. Liu, J. Hofkens, Y. M. Zheng, J. Long, M. B. J. Roeffaers, Adv. Mater. 2024, 2313209.
10.1002/adma.202313209 Google Scholar
- 22T. Chen, F. Ning, J. Qi, G. Feng, Y. Wang, J. Song, T. Yang, X. Liu, L. Chen, D. Xia, iScience 2023, 26, 105890.
- 23G. K. Williamson, R. E. Smallman, Philos. Mag. 1956, 1, 34.
- 24S. Khatun, S. Pal, P. Roy, J. Alloys Compd. 2024, 977, 173393.
- 25B. Cantor, I. T. H. Chang, P. Knight, A. B. Vincent, Mater. Sci. Eng. A 2004, 375–377, 213.
- 26Z. Fu, J. Hu, W. Hu, S. Yang, Y. Luo, Appl. Surf. Sci. 2018, 441, 1048.
- 27J. Li, C. Shu, C. Liu, X. Chen, A. Hu, J. Long, Small 2020, 16, 2001812.
- 28S. Khatun, P. Roy, J. Colloid Interface Sci. 2023, 630, 844.
- 29L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen, X. Liu, Z. Wen, J. Am. Chem. Soc. 2022, 144, 7224.
- 30T. Zhang, Y. L. Meng, Y. H. Zhao, J. C. Ni, Y. Pan, Y. Dai, Z. Tan, X. F. Wang, X. Z. Song, Chem. Commun. 2022, 58, 7682.
- 31S. Khatun, P. Roy, Chem. Commun. 2020, 56, 7293.
- 32K. Fan, H. Chen, Y. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun, Nat. Commun. 2016, 7, 11981.
- 33K. Huang, B. Zhang, J. Wu, T. Zhang, D. Peng, X. Cao, Z. Zhang, Z. Li, Y. Huang, J. Mater. Chem. A 2020, 8, 11938.
- 34L. Zhang, W. Ji, J. Gu, Q. Jiang, K. Liu, M. Huang, P. Liu, P. Ma, Z. Fu, J. Electroanal. Chem. 2022, 920, 116545.
10.1016/j.jelechem.2022.116545 Google Scholar
- 35S. Khatun, K. Shimizu, S. Singha, R. Saha, S. Watanabe, P. Roy, Chem. Eng. J. 2021, 426, 131884.
- 36M. Q. Yang, J. Wang, H. Wu, G. W. Ho, Small 2018, 14, 1703323.
- 37F. Xue, X. Liu, J. Liu, J. Phys. Chem. C 2019, 123, 684.
- 38G. George, S. Anandhan, RSC Adv. 2014, 4, 62009.
- 39M. P. Kumar, M. Sasikumar, A. Arulraj, V. Rajasudha, G. Murugadoss, M. R. Kumar, S. G. Peera, R. V. Mangalaraja, Catalysts 2022, 12, 1470.
10.3390/catal12111470 Google Scholar
- 40M. Mohammadtaheri, Q. Yang, Y. Li, J. C. Gomez, Coatings 2018, 8, 111.
- 41A. Baltakesmez, C. Aykac, B. Guzeldir, Appl. Phys. A 2019, 125, 4411.
10.1007/s00339-019-2736-0 Google Scholar
- 42E. Sartoretti, C. Novara, F. Giorgis, M. Piumetti, S. Bensaid, N. Russo, D. Fino, Sci. Rep. 2019, 9, 3875.
- 43Z. Liu, X. Li, M. Mayyas, P. Koshy, J. N. Hart, C. C. Sorrell, CrystEngComm 2018, 20, 204.
- 44V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Norskov, Angew. Chemie 2006, 45, 2897.
- 45B. Hammer, J. K. Norskov, Nature 1995, 376, 238.
- 46Z. W. Chen, J. Li, P. Ou, J. E. Huang, Z. Wen, L. Chen, X. Yao, G. Cai, C. C. Yang, C. V. Singh, Q. Jiang, Nat. Commun. 2024, 15, 359.
- 47M. J. Kadhim, M. I. Gamaj, J. Chem. Rev. 2020, 2, 1820188.
- 48C. Linder, S. G. Rao, R. D. Boyd, A. L. Febvrier, P. Eklund, S. Munktell, E. M. Bjork, ACS Appl. Energy Mater. 2022, 5, 10838.
- 49B. G. Prakashaiah, D. V. Kumara, A. A. Pandith, A. N. Shetty, B. E. A. Rani, Corros. Sci. 2018, 136, 326.
- 50S. Bernardini, F. Bellatreccia, A. Casanova, G. D. Ventura, A. Sodo, J. Raman Spectrosc. 2019, 50, 873.
- 51N. Han, F. Zhao, Y. Li, J. Mater. Chem. A 2015, 3, 16348.
- 52M. Zhao, W. Li, J. Li, W. Hu, C. M. Li, Adv. Sci. 2020, 7, 2001965.
- 53Y. H. Wang, L. Li, J. Shi, M. Y. Xie, J. Nie, G. F. Huang, B. Li, W. Hu, A. Pan, W. Q. Huang, Adv. Sci. 2023, 10, 2303321.
- 54M. Shi, T. Tang, L. Xiao, J. Han, X. Bai, Y. Sun, S. Chen, J. Sun, Y. Ma, J. Guan, Chem. Commun. 2023, 59, 11971.
- 55B. Li, J. Zhao, Y. Wu, G. Zhang, H. Wu, F. Lyu, J. He, J. Fan, J. Lu, Y. Y. Li, Small 2023, 19, 2301715.
- 56F. Younas, I. Bibi, M. Afzal, F. A. Misned, N. K. Niazi, K. Hussain, M. Shahid, Q. Shakil, F. Ali, H. Wang, Water 2023, 15, 391.
- 57Y. Vasseghian, S. S. Rad, J. A. V. Boas, A. Khataee, Chemosphere 2021, 267, 128904.