Oxygen-Terminated Polycrystalline Boron-Doped Diamond Superhydrophobic Surface with Excellent Mechanical and Thermal Stabilities
Peng Wang
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorTianyi Wang
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorMingchao Yang
College of Physical Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066000 China
Search for more papers by this authorQiliang Wang
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorXiaoxi Yuan
Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun, 130052 China
Search for more papers by this authorZheng Cui
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorNan Gao
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorJunsong Liu
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorShaoheng Cheng
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorZhigang Jiang
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Huichao Jin
Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hongdong Li
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorPeng Wang
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorTianyi Wang
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorMingchao Yang
College of Physical Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066000 China
Search for more papers by this authorQiliang Wang
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorXiaoxi Yuan
Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun, 130052 China
Search for more papers by this authorZheng Cui
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorNan Gao
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorJunsong Liu
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorShaoheng Cheng
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorZhigang Jiang
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Huichao Jin
Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hongdong Li
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Superhydrophobic surfaces are of great interest because of their remarkable properties. Due to its maximal hardness and chemical inertness, diamond film has great potential in fabricating robust superhydrophobic surfaces. In the present study, an oxygen-terminated polycrystalline boron-doped diamond (O-PBDD) superhydrophobic surface with micro/nano-hierarchical porous structures is developed. The preparation method is very simple, requiring only sputtering and dewetting procedures. The former involves sputtering gold and copper particles onto the hydrogen-terminated polycrystalline boron-doped diamond (H-PBDD) to form gold/copper films, whereas the latter involves placing the samples in an atmospheric tube furnace to form hierarchical pores. By controlling the etching parameters, the wettability of the O-PBDD surface can be adjusted from hydrophilic to superhydrophobic, which is significantly different to the normal hydrophilicity feature of O-termination diamonds. The water contact angle of the obtained O-PBDD surface can reach 165 ± 5°, which is higher than the superhydrophobic diamond surfaces that are reported in the literature. In addition, the O-PBDD surface exhibits excellent durability; it can maintain satisfactory superhydrophobicity even after high-pressure, high-temperature, and sandpaper friction tests. This work provides a new research direction for fabricating robust superhydrophobic materials with diamond film.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202402481-sup-0001-SuppMat.docx19.3 KB | Supporting Information |
smll202402481-sup-0002-MovieS1.avi27.5 MB | Supplemental Movie 1 |
smll202402481-sup-0003-MovieS2.avi5.2 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Neinhuis, W. Barthlott, Ann. Bot. 1997, 79, 667.
- 2W. Barthlott, C. Neinhuis, Planta 1997, 202, 1.
- 3M. Liu, S. Wang, L. Jiang, Nat. Rev. Mater. 2017, 2, 17036.
- 4D. Wang, Q. Sun, M. J. Hokkanen, C. Zhang, F.-Y. Lin, Q. Liu, S.-P. Zhu, T. Zhou, Q. Chang, B. He, Q. Zhou, L. Chen, Z. Wang, R. H. A. Ras, X. Deng, Nature 2020, 582, 55.
- 5Z. Han, X. Feng, Z. Guo, S. Niu, L. Ren, Adv. Mater. 2018, 30, 1704652.
- 6J. Yoon, M. Ryu, H. Kim, G.-N. Ahn, S.-J. Yim, D.-P. Kim, H. Lee, Adv. Mater. 2020, 32, 2002710.
- 7T. Mouterde, G. Lehoucq, S. Xavier, A. Checco, C. T. Black, A. Rahman, T. Midavaine, C. Clanet, D. Quéré, Nat. Mater. 2017, 16, 658.
- 8M. Cui, B. Wang, Z. Wang, Adv. Eng. Mater. 2019, 21, 1801379.
- 9D. Zang, R. Zhu, W. Zhang, X. Yu, L. Lin, X. Guo, M. Liu, L. Jiang, Adv. Funct. Mater. 2017, 27, 1605446.
- 10M. J. Kreder, J. Alvarenga, P. Kim, J. Aizenberg, Nat. Rev. Mater. 2016, 1, 15003.
- 11L. Wang, Q. Gong, S. Zhan, L. Jiang, Y. Zheng, Adv. Mater. 2016, 28, 7729.
- 12S. Zhang, J. Huang, Y. Cheng, H. Yang, Z. Chen, Y. Lai, Small 2017, 13, 1701867.
- 13F. Geyer, M. D'Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao, A. Kaltbeitzel, T.-F. Sloot, R. Berger, H.-J. Butt, D. Vollmer, Sci. Adv. 2020, 6, eaaw9727.
- 14Y. Lu, S. Sathasivam, J. Song, C. R. Crick, C. J. Carmalt, I. P. Parkin, Science 2015, 347, 1132.
- 15X. Zhang, S. Liu, A. Salim, S. Seeger, Small 2019, 15, 1901822.
- 16X. Q. Cheng, Y. Jiao, Z. Sun, X. Yang, Z. Cheng, Q. Bai, Y. Zhang, K. Wang, L. Shao, ACS Nano 2021, 15, 3500.
- 17W. Bing, H. Wang, L. Tian, J. Zhao, H. Jin, W. Du, L. Ren, Small Struct. 2021, 2, 2100079.
- 18F. Temprano-Coleto, S. M. Smith, F. J. Peaudecerf, J. R. Landel, F. Gibou, P. Luzzatto-Fegiz, Proc. Natl. Acad. Sci. USA 2023, 120, 2211092120.
10.1073/pnas.2211092120 Google Scholar
- 19K. Liao, W. Wang, X. Mei, W. Zhao, H. Yuan, M. Wang, B. Wang, Mater. Des. 2023, 225, 111501.
- 20H. Jin, L. Tian, W. Bing, J. Zhao, L. Ren, Prog. Mater. Sci. 2022, 124, 100889.
- 21L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Langmuir 2008, 24, 4114.
- 22A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 40, 546.
- 23R. N. Wenzel, Ind. Eng. Chem. Res. 1936, 28, 988.
- 24Y. Li, B. Li, X. Zhao, N. Tian, J. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 39391.
- 25T. Lv, Z. Cheng, D. Zhang, E. Zhang, Q. Zhao, Y. Liu, L. Jiang, ACS Nano 2016, 10, 9379.
- 26M. Amabili, A. Giacomello, S. Meloni, C. M. Casciola, Adv. Mater. Interfaces 2015, 2, 1500248.
- 27J. V. Macpherson, Phys. Chem. Chem. Phys. 2015, 17, 2935.
- 28N. Yang, S. Yu, J. V. Macpherson, Y. Einaga, H. Zhao, G. Zhao, G. M. Swain, X. Jiang, Chem. Soc. Rev. 2019, 48, 157.
- 29S. Feijoo, S. Baluchová, M. Kamali, J. G. Buijnsters, R. Dewil, Environ. Pollut. 2024, 347, 123705.
- 30J. W. Liu, T. Teraji, B. Da, Y. Koide, Appl. Phys. Lett. 2024, 124, 072103.
- 31Z. Liu, S. Baluchová, Z. Li, Y. Gonzalez-Garcia, C. E. Hall, J. G. Buijnsters, Acta Mater. 2024, 266, 119671.
- 32L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, O. Loginova, Diam. Relat. Mater. 2002, 11, 845.
- 33Y. Yang, H. Li, S. Cheng, G. Zou, C. Wang, Q. Lin, Chem. Commun. 2014, 50, 2900.
- 34S. Tian, W. Sun, Z. Hu, B. Quan, X. Xia, Y. Li, D. Han, J. Li, C. Gu, Langmuir 2014, 30, 12647.
- 35Y. Yang, C. Wang, H. Li, Q. Lin, Appl. Surf. Sci. 2013, 270, 260.
- 36L. E. Vasconcellos de Siqueira Brandão, A. Fassini Michels, K. C. Camargo, N. M. Balzaretti, F. Horowitz, Surf. Coat. Technol. 2013, 232, 384.
- 37Y. B. Zhou, Y. Yang, W. M. Liu, Q. Ye, B. He, Y. S. Zou, P. F. Wang, X. J. Pan, W. J. Zhang, I. Bello, S. T. Lee, Appl. Phys. Lett. 2010, 97, 133110.
- 38A. G. Montaño-Figueroa, J. J. Alcantar-Peña, P. Tirado, A. Abraham, E. de Obaldia, O. Auciello, Carbon 2018, 139, 361.
- 39M. Karlsson, P. Forsberg, F. Nikolajeff, Langmuir 2010, 26, 889.
- 40W. Janssen, E. Gheeraert, Diam. Relat. Mater. 2011, 20, 389.
- 41T. Ohashi, W. Sugimoto, Y. Takasu, Diam. Relat. Mater. 2011, 20, 1165.
- 42A. Chepurov, V. Sonin, D. Shcheglov, A. Latyshev, E. Filatov, A. Yelisseyev, Int. J. Refract. 2018, 76, 12.
- 43D. Berman, S. A. Deshmukh, B. Narayanan, S. K. R. S. Sankaranarayanan, Z. Yan, A. A. Balandin, A. Zinovev, D. Rosenmann, A. V. Sumant, Nat. Commun. 2016, 7, 12099.
- 44Y. Li, Y. Kim, P. V. Bakharev, W. K. Seong, C. Hyun, D. C. Camacho-Mojica, L. Zhang, B. V. Cunning, T. J. Shin, G. Lee, R. S. Ruoff, Chem. Mater. 2022, 34, 2599.
- 45S. Zhang, J. Zhao, Y. Li, X. Hao, X. Zhang, P. Qiao, Y. Liang, B. Liang, W. Zhang, W. Cao, L. Yang, B. Dai, K. Liu, B. Liu, J. Zhu, J. Han, Funct. Diam. 2023, 3, 2269964.
10.1080/26941112.2023.2269964 Google Scholar
- 46D. Wen, Y. Li, J. Zhao, X. Hao, S. Zhang, B. Liu, Y. Zhang, V. Ralchenko, B. Dai, J. Zhu, Carbon 2024, 218, 118770.
10.1016/j.carbon.2023.118733 Google Scholar
- 47T. Zhao, L. Jiang, Colloids Surf. B 2018, 161, 324.
- 48M. Herrmann, B. Matthey, T. Gestrich, Diam. Relat. Mater. 2019, 92, 47.
- 49X. Wang, X. Song, H. Wang, Y. Qiao, K. Larsson, F. Sun, ACS Appl. Mater. Interfaces 2020, 12, 42302.
- 50E. N. Farabaugh, L. Robins, A. Feldman, C. E. Johnson, J. Mater. Res. 1995, 10, 1448.
- 51W. Smirnov, J. J. Hees, D. Brink, W. Müller-Sebert, A. Kriele, O. A. Williams, C. E. Nebel, Appl. Phys. Lett. 2010, 97, 073117.
- 52F. K. de Theije, E. van Veenendaal, W. J. P. van Enckevort, E. Vlieg, Surf. Sci. 2001, 492, 91.
- 53D. Takagi, Y. Kobayashi, H. Hibino, S. Suzuki, Y. Homma, Nano Lett. 2008, 8, 832.
- 54B. B. Wang, X. L. Qu, X. X. Zhong, Y. A. Chen, K. Zheng, U. Cvelbar, K. Ostrikov, Surf. Coat. Technol. 2018, 88, 282.
- 55M. Uemura, Tribol. Int. 2004, 37, 887.
- 56J. Wang, L. Wan, J. Chen, J. Yan, Appl. Surf. Sci. 2015, 346, 388.
- 57D. Zhang, C. Zhang, J. Liu, Q. Chen, X. Zhu, C. Liang, ACS Appl. Nano Mater. 2019, 2, 28.
- 58V. Mortet, I. Gregora, A. Taylor, N. Lambert, P. Ashcheulov, Z. Gedeonova, P. Hubik, Carbon 2020, 168, 319.
- 59T. Sharda, M. M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno, Diam. Relat. Mater. 2001, 10, 561.
- 60Y. Kaibara, K. Sugata, M. Tachiki, H. Umezawa, H. Kawarada, Diam. Relat. Mater. 2003, 12, 560.
- 61L. Y. Ostrovskaya, A. P. Dementiev, I. I. Kulakova, V. G. Ralchenko, Diam. Relat. Mater. 2005, 14, 486.
- 62L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Saveliev, V. Zhuravlev, Diam. Relat. Mater. 2007, 16, 2109.
- 63S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, R. Boukherroub, Electrochem. Commun. 2010, 12, 438.
- 64J. H. C. Yang, K. Teii, Thin Solid Films 2012, 520, 6566.
- 65L. Marcon, A. Addad, Y. Coffinier, R. Boukherroub, Acta Biomater. 2013, 9, 4585.
- 66Y. He, H. Lin, X. Wang, W. Huang, R. Chen, H. Li, Chem. Commun. 2016, 52, 8026.
- 67M. Mertens, M. Mohr, K. Brühne, H. J. Fecht, M. Łojkowski, W. Święszkowski, W. Łojkowski, Appl. Surf. Sci. 2016, 390, 526.
- 68X. Zhang, Y. Cui, X. Liu, T. Sui, C. Ji, D. Zhang, Surf. Coat. Technol. 2019, 375, 681.
- 69Y. Zheng, J. Liu, J. Wei, L. Chen, Z. Li, H. Hao, F. Li, H. Ye, C. Li, Surf. Coat. Technol. 2019, 374, 409.
- 70W. Long, H. Li, B. Yang, N. Huang, L. Liu, Z. Gai, X. Jiang, J. Mater. Sci. Technol. 2020, 48, 1.
- 71J. Yong, F. Chen, Q. Yang, Z. Jiang, X. Hou, Adv. Mater. Interfaces 2018, 5, 1701370.
- 72G. Ding, W. Jiao, R. Wang, Y. Niu, L. Chen, L. Hao, Adv. Funct. Mater. 2018, 28, 1706686.