Improving the Oxygen Evolution Reaction Kinetics in Zn-Air Battery by Iodide Oxidation Reaction
Jiaqi Ran
Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000 China
Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorPeng Chen
Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorXiangning Quan
Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Mingsu Si
Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Daqiang Gao
Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJiaqi Ran
Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000 China
Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorPeng Chen
Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorXiangning Quan
Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Mingsu Si
Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Daqiang Gao
Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Zinc-air batteries (ZABs) have garnered considerable attention as a highly promising contender in the field of energy storage and conversion. Nevertheless, their performance is considerably impeded by the proliferation of dendrites on the Zinc anode and the slow kinetics of the redox reaction on the air cathode. Herein, taking Ag30%@LaCoO3 (Ag30%@LCO) heterojunction catalyst as the cathode, it is demonstrated that adding KI additives to the alkaline electrolyte can not only enhance the oxygen electrocatalytic reaction but also inhibit the formation of zinc anode dendrites, thereby achieving a comprehensive improvement in the performance of ZABs. Under the action of the KI additive, the optimized Ag30%@LCO catalyst shows a decreased overpotential from 460 to 220 mV at j = 10 mA cm−2, while the assembled ZAB shows reduced charging potential (1.8 V), and long cycle stability (180 h). Furthermore, the morphology characterization results indicate a reduction in dendrites on the Zn anode. Both experimental and calculated results indicate that the presence of I− as a reaction modifier alters the trajectory of the conventional oxygen evolution reaction, resulting in a more thermodynamically favorable pathway. The introduction of KI additives as electrolytes provides a straightforward approach to developing comprehensively improved ZABs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202402052-sup-0001-SuppMat.docx5.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. F. Service, Science 2021, 372, 890.
- 2W. Sun, F. Wang, B. Zhang, M. Y. Zhang, V. Küpers, X. Ji, C. Theile, P. Bieker, K. Xu, C. S. Wang, M. Winter, Science 2021, 371, 46.
- 3P. Zhang, K. Chen, J. Li, M. Wang, M. Li, Y. Liu, Y. Pan, Adv. Mater. 2023, 35, 2303243.
- 4T. Gu, D. Zhang, Y. Yang, C. Peng, D. Xue, C. Zhi, M. Zhu, J. Liu, Adv. Funct. Mater. 2023, 33, 2212299.
- 5X. Zhou, S. Chu, Z. Jin, K. Hu, P. Liu, H.-J. Qiu, X. Lin, ACS Materials Lett 2023, 5, 1656.
- 6E. Y. Choi, D. E. Kim, S. Y. Lee, C. B. Park, C. K. Kim, Appl. Catal. B Environ. 2023, 325, 122386.
- 7J. Zhou, Y. Mei, F. Wu, Y. Hao, W. Ma, L. Li, M. Xie, R. Chen, Angew. Chem.Int. Ed. 2023, 62, 2023044.
- 8D. Qiu, B. Li, C. Zhao, J. Dang, G. Chen, H. Qiu, H. Miao, Energy Storage Mater. 2023, 61, 102903.
- 9X. Song, L. Bai, C. Wang, D. Wang, K. Xu, J. Dong, Y. Li, Q. Shen, J. Yang, ACS Nano 2023, 17, 15113.
- 10a) J. Ran, L. Wang, M. Si, X. Liang, D. Gao, Small 2022, 19, 2206367; b) X. Wei, S. Cao, H. Xu, C. Jiang, Z. Wang, Y. Ouyang, X. Lu, F. Dai, D. Sun, ACS Materials Lett 2022, 4, 1991.
- 11a) J. Li, M. Lin, W. Huang, X. Liao, Y. Ma, L. Zhou, L. Mai, J. Lu, Small Methods 2023, 7, 2201664; b) Q. Yu, J. Lv, J. Li, R. Yu, J. Wu, S. Xi, X. Li, N. Xu, L. Zhou, L. Mai, Energy Environ. Mater. 2023, 6, 12389.
- 12Z. Guo, Q. Zhang, C. Wang, Y. Zhang, S. Dong, G. Cui, Adv. Funct. Mater. 2022, 32, 2108993.
- 13X. Wang, Sun, C., Z. S. Wu, SusMat 2023, 3, 180.
- 14Y. Zhu, M. Ge, F. Ma, Q. Wang, P. Huang, C. Lai, Adv. Funct. Mater. 2023, 34, 2301964.
- 15Y. Du, Y. Li, B. B. Xu, T. X. Liu, X. Liu, F. Ma, X. Gu, C. Lai, Small 2022, 18, 2104640.
- 16J. B. Park, S. H. Lee, H. G. Jung, D. Aurbach, Y. K. Sun, Adv. Mater. 2018, 30, 1704162.
- 17B. D. McCloskey, D. A. Addison, ACS Catal. 2017, 7, 772.
- 18Y. Qiao, S. Wu, Y. Sun, S. Guo, J. Yi, P. He, H. Zhou, ACS Energy Lett. 2017, 2, 1869.
- 19M. Tułodziecki, G. M. Leverick, C. V. Amanchukwu, Y. Katayama, D. G. Kwabi, F. Bardé, P. T. Hammond, Y. Shao-Horn, Energy Environ. Sci. 2017, 10, 1828.
- 20Z. Peng, Nat. Chem. 2023, 15, 1206.
- 21I. Temprano, T. Liu, E. Petrucco, J. H. J. Ellison, G. Kim, E. Jónsson, C. P. Grey, Joule 2020, 4, 2501.
- 22X. Bi, J. Li, M. Dahbi, J. Alami, K. Amine, J. Lu, Adv. Mater. 2021, 34, 2106148.
- 23T. Liu, G. Kim, E. Jónsson, E. Castillo-Martinez, I. Temprano, Y. Shao, J. Carretero-González, R. N. Kerber, C. P. Grey, ACS Catal. 2019, 9, 66.
- 24C. K. Lee, Y. J. Park, ACS Appl. Mater. Interfaces 2016, 8, 8561.
- 25S. Zhao, T. Liu, Y. Dai, J. Wang, Y. Wang, Z. Guo, J. Yu, I. T. Bello, M. Ni, Appl. Catal. B 2023, 320, 121992.
- 26Q. Liu, C. Xia, C. He, W. Guo, Z. P. Wu, Z. Li, Q. Zhao, B. Y. Xia, Angew. Chem., Int. Ed. 2022, 61, 202210567.
- 27Y. Zhang, H. Qin, M. Alfred, H. Ke, Y. Cai, Q. Wang, F. Huang, B. Liu, P. Lv, Q. Wei, Energy Storage Mater. 2021, 42, 88.
- 28Z. Song, J. Ding, B. Liu, X. Liu, X. Han, Y. Deng, W. Hu, C. Zhong, Adv. Mater. 2020, 32, 1908127.
- 29a) M. Han, I. Gómez-Recio, D. G. Martín, N. O. Peña, M. L. Ruiz-González, M. Selmane, J. M. González-Calbet, O. Ersen, A. Zitolo, B. Lassalle-Kaiser, D. Portehault, C. Laberty-Robert, ACS Catal. 2023, 13, 5733; b) P. Anand, M.-S. Wong, Y.-P. Fu, Energy Storage Mater. 2023, 58, 362.
- 30a) Y. Duan, S. Sun, S. Xi, X. Ren, Y. Zhou, G. Zhang, H. Yang, Y. Du, Z. J. Xu, Chem. Mater. 2017, 29, 10534; b) J. Ran, T. Wang, J. Zhang, Y. Liu, C. Xu, S. Xi, D. Gao, Chem. Mater. 2020, 32, 3439.
- 31a) J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546; b) W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Shao-Horn, Y., Energy Environ. Sci. 2015, 8, 1404.
- 32H. Wang, X. Chen, D. Huang, M. Zhou, D. Ding, H. Luo, ChemCatChem 2020, 12, 2768.
- 33a) C. Yang, H. Xie, B. Li, C. Shi, C. He, N. Zhao, E. Liu, J. Alloys Compd. 2023, 941, 168918; b) T. Wang, H. He, Z. Meng, S. Li, M. Xu, X. Liu, Y. Zhang, M. Liu, M. Feng, ChemPhysChem 2023, 24, 2022008.
- 34a) S. She, Y. Zhu, X. Wu, Z. Hu, A. Shelke, W.-F. Pong, Y. Chen, Y. Song, M. Liang, C.-T. Chen, H. Wang, W. Zhou, Z. Shao, Adv. Funct. Mater. 2022, 32, 2111091; b) Y. Liu, C. Ye, S. N. Zhao, Y. Wu, C. Liu, J. Huang, L. Xue, J. Sun, W. Zhang, X. Wang, P. Xiong, J. Zhu, Nano Energy 2022, 99, 107344.
- 35a) M.-J. Choi, T. L. Kim, J. K. Kim, T. H. Lee, S. A. Lee, C. Kim, K. Hong, C. W. Bark, K.-T. Ko, H. W. Jang, Nano Lett. 2020, 20, 8040; b) S. F. Li, J. Zheng, L. Hu, Y. Ma, D. Yan, Dalton Trans. 2023, 52, 4207.
- 36a) Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Chem 2017, 3, 812; b) B. You, M. T. Tang, F. C. Tsai, X. A.-P. Zheng, H. Li, Adv. Mater. 2019, 31, 1807001.
- 37a) J. Ran, J. F. Wu, Y. Hu, M. Shakouri, B. Xia, D. Gao, J. Mater. Chem. A 2022, 10, 1506; b) N. K. Oh, C. Kim, J. Lee, O. Kwon, Y. Choi, G. Y. Jung, H. Y. Lim, S. K. Kwak, G. Kim, H. Park, Nat. Commun. 2019, 10, 1723.
- 38a) Y. Zhu, W. Zhou, Z. Shao, Small 2017, 13, 1603793; b) X. Y. Wang, Z. Y. Pan, X. F. Chu, K. K. Huang, Y. G. Cong, R. Cao, R. Sarangi, L. P. Li, G. S. Li, S. H. Feng, Angew. Chem., Int. Ed. 2019, 58, 11720.
- 39J. Ahmed, T. Ahamad, N. Alhokbany, M. A. M. Khan, P. Arunachalam, M. S. Amer, R. M. Alotaibi, S. M. Alshehri, Journal of Industrial and Engineering Chemistry 2023, 121, 100.
- 40Y. Liang, D. Ye, N. Han, P. Liang, J. Wang, G. Yang, C. Zhang, X. He, M. Chen, C. Zhang, Electrochim. Acta 2021, 391, 138908.
- 41a) D. Neagu, T.-S. Oh, D. N. Miller, H. Ménard, S. M. Bukhari, S. R. Gamble, R. J. Gorte, J. M. Vohs, J. T. S. Irvine, Nat. Commun. 2015, 6, 8120; b) Y. Cong, Q. Tang, X. Wang, M. Liu, J. Liu, Z. Geng, R. Cao, X. Zhang, W. Zhang, K. Huang, S. Feng, ACS Catal. 2019, 9, 11743.
- 42Q. Fan, S. Zhang, L. Sun, X. Dong, L. Zhang, W. Shan, Z. Zhu, Chin. J. Catal. 2016, 37, 428.
- 43a) X. Zheng, B. Li, L. Shen, Y. Cao, Y. Zhan, S. Zheng, S. Wang, L. Jiang, Appl. Catal., B 2023, 329, 122526; b) L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Adv. Mater. 2017, 29, 1606793; c) J. Bao, X. D. Zhang, B. Fan, J. J. Zhang, M. Zhou, W. L. Yang, X. Hu, H. Wang, B. C. Pan, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 7399; d) Y. Lu, T. Liu, C. L. Dong, C. Yang, L. Zhou, Y. C. Huang, Y. Li, B. Zhou, Y. Zou, S. Wang, Adv. Mater. 2022, 34, 2107185.
- 44K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy 2020, 73, 104761.
- 45C. Zhang, F. Zheng, Z. Zhang, D. Xiang, C. Cheng, Z. Zhuang, P. Li, X. Li, W. Chen, J. Mater. Chem. A 2019, 7, 9059.
- 46B. Singh, P. Mannu, Y.-C. Huang, R. Prakash, S. Shen, C.-L. Dong, A. Indra, Angew. Chem., Int. Ed. 2022, 61, 202211585.
- 47J.-H. Kwon, W. S. Choi, Y.-K. Kwon, R. Jung, J.-M. Zuo, H. N. Lee, M. Kim, Chem. Mater. 2014, 26, 2496.
- 48a) N. Biškup, J. Salafranca, V. Mehta, M. P. Oxley, Y. Suzuki, S. Pennycook, J. S. T. Pantelides, M. Varela, Phys. Rev. Lett. 2014, 112, 087202; b) V. V. Mehta, N. Biskup, C. Jenkins, E. Arenholz, M. Varela, Y. Suzuki, Phys. Rev. B 2015, 91, 144418.
- 49a) J. Gazquez, W. Luo, M. P. Oxley, M. Prange, M. A. Torija, M. Sharma, C. Leighton, S. T. Pantelides, S. J. Pennycook, M. Varela, Nano Lett. 2011, 11, 973; b) R. F. Klie, J. C. Zheng, Y. Zhu, M. Varela, J. Wu, C. Leighton, Phys. Rev. Lett. 2007, 99, 047203.
- 50G. E. Sterbinsky, P. J. Ryan, J.-W. Kim, E. Karapetrova, J. X. Ma, J. Shi, J. C. Woicik, Phys. Rev. B 2012, 85, 020403.
- 51a) J. Chen, Q. Long, K. Xiao, T. Ouyang, N. Li, S. Ye, Z.-Q. Liu, Sci. Bull. 2021, 66, 1063; b) R. Lu, C. Quan, C. Zhang, Q. He, X. Liao, Z. Wang, Y. Zhao, Nano Res. 2022, 15, 6067.
- 52a) J.-H. Park, H. J. Kwon, D. Y. Lee, S.-J. Suh, Small 2024, 2400046;
10.1002/smll.202400046 Google Scholarb) S. Deka, M. K. Jaiswal, P. Rajputcd, B. Choudhury, J. Mater. Chem. A 2024, 12, 9532.
- 53Y. Tang, Y. Li, Z. Yu, Y. Bai, Y. Chen, Y. Sun, P. Wan, Green Chem. 2012, 14, 334;
- 54B. Grgur, M. Gvozdenović, J. Stevanović, B. Jugović, L. T. Trišović, Chem. Eng. J. 2006, 124, 47.
- 55G. Strack, S. Babanova, K. E. Farrington, H. R. Luckarift, P. Atanassov, G. R. Johnson, J. Electrochem. Soc. 2013, 160, G3178.
- 56Z. Song, J. Ding, B. Liu, Y. Shen, J. Liu, X. Han, Y. Deng, C. Zhong, W. Hu, Chem. Eng. J. 2022, 429, 132331.
- 57X. Liu, J. Xu, Z. Ni, R. Wang, J. You, R. Guo, Chem. Eng. J. 2019, 356, 22.
- 58a) G. Yang, L. Wang, S. Zheng, H. Wu, D. Hao, Q. Li, H. Du, H. Yamashita, Q. Wang, J. Environ. Chem. Eng. 2023, 11, 110071; b) S. Luo, X. Xiao, Y. Wang, M. Lu, J. Chem. Technol. Biot. 2021, 96, 2298.
- 59Z. F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, Nat. Energy 2019, 4, 329.
- 60a) J. Hao, X. Li, X. Zeng, D. Li, J. Mao, Z. Guo, Energy Environ. Sci. 2020, 13, 3917; b) Z. Liu, R. Wang, Y. Gao, S. Zhang, J. Wan, J. Mao, L. Zhang, H. Li, J. Hao, G. Li, L. Zhang, C. Zhang, Adv. Funct. Mater. 2023, 33, 2308463.
- 61Q. Zhang, Y. Li, E. Poh, Z. Xing, M. Zhang, M. Wang, Z. Sun, J. Pan, S. V. C. Vummaleti, J. Zhang, W. Chen, Adv. Energy Mater. 2023, 13, 2301748.