Cobalt Nitride Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Modified Separator of Li–S Battery Achieving the Synergistic Effect of Restriction-Adsorption-Catalysis of Polysulfides
Corresponding Author
Henan Jia
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJiahang Fan
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
Search for more papers by this authorPei Su
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
Search for more papers by this authorTaotao Guo
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
Search for more papers by this authorCorresponding Author
Mao-Cheng Liu
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Henan Jia
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJiahang Fan
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
Search for more papers by this authorPei Su
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
Search for more papers by this authorTaotao Guo
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
Search for more papers by this authorCorresponding Author
Mao-Cheng Liu
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Although lithium–sulfur (Li–S) batteries have broad market prospects due to their high theoretical energy density and potential cost-effectiveness, the practical applications still face serious shuttle effects of polysulfides (LiPSs) and slow redox reactions. Therefore, in this paper, cobalt nitride nanoparticles encapsulated in nitrogen-doped carbon nanotube (CoN@NCNT) are prepared as a functional layer for the separator of high-performance Li–S batteries. Carbon nanotubes with large specific surface areas not only promote the transport of ions and electrons but also weaken the migration of LiPSs and confine the dissolution of LiPSs in electrolytes. The lithiophilic heteroatom N adsorbs LiPSs by strong chemical adsorption, and the CoN particles with high catalytic activity greatly improve the kinetics of the conversion between LiPSs and Li2S2/Li2S during the charge–discharge process. Due to these advantages, the battery with CoN@NCNT modified separator has superior rate performance (initial discharge capacity of 834.7 mAh g−1 after activation at 1 C) and excellent cycle performance (capacity remains 729.7 mAh g−1 after 200 cycles at 0.2 C). This work proposes a strategy that can give the separator a strong ability to confinement-adsorption-catalysis of LiPSs in order to provide more possibilities for the development of Li–S batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202311343-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Yao, C. Tian, C. Yang, W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng, I. Manke, N. Chen, Z. Wu, L. Zhan, Y. Wang, R. Chen, Adv. Mater. 2022, 34, 2106370.
- 2R. Saroha, J. Cho, Small Methods. 2022, 6, 2200049.
- 3X. Gao, Y. Xie, X. Zhu, K. Sun, X. Xie, Y. Liu, J. Yu, B. Ding, Small. 2018, 14, 1802443.
- 4F. Zeng, F. Wang, N. Li, K. Song, S. Chang, L. Shi, X. Zhou, W. Wang, Z. Jin, A. Wang, N. Yuan, J. Ding, Nanoscale. 2021, 13, 17592.
- 5H. Zhang, D. Tian, Z. Zhao, X. Liu, Y. Hou, Y. Tang, J. Liang, Z. Zhang, X. Wang, J. Qiu, Energy Storage Mater. 2019, 21, 210.
- 6J. Xiao, S. Zhang, Y. Sun, X. Liu, G. He, H. Liu, J. Khan, Y. Zhu, Y. Su, S. Wang, L. Han, Small. 2023, 19, 2206472.
- 7R. Sun, M. Qu, L. Peng, W. Yang, Z. Wang, Y. Bai, K. Sun, Small. 2023, 19, 230209.
- 8K. Xi, B. Chen, H. Li, R. Xie, C. Gao, C. Zhang, R. Kumar, J. Robertson, Nano Energy. 2015, 12, 538.
- 9H. Zhang, W. Zhao, M. Zou, Y. Wang, Y. Chen, L. Xu, H. Wu, A. Cao, Adv. Energy Mater. 2018, 8, 1800013.
- 10X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z. Seh, Q. Cai, W. Li, G. Zhou, C. Zu, Y. Cui, Nat. Commun. 2016, 7, 11203.
- 11H. Li, S. Ma, H. Cai, H. Zhou, Z. Huang, Z. Hou, J. Wu, W. Yang, H. Yi, C. Fu, Y. Kuang, Energy Storage Mater. 2019, 18, 338.
- 12Y. Song, W. Zhao, L. Kong, L. Zhang, X. Zhu, Y. Shao, F. Ding, Q. Zhang, J. Sun, Z. Liu, Energy Environ. Sci. 2018, 11, 2620.
- 13T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q. Yang, Energy Environ. Sci. 2017, 10, 1694.
- 14H. Wu, H. Jiang, Y. Yang, C. Hou, H. Zhao, R. Xiao, H. Wang, J. Mater. Chem. A. 2020, 8, 14498.
- 15B. Liu, Y. Zhang, Z. Wang, C. Ai, S. Liu, P. Liu, Y. Zhong, S. Lin, S. Deng, Q. Liu, G. Pan, X. Wang, X. Xia, J. Tu, Adv. Mater. 2020, 32, 2003657.
- 16J. Kang, X. Tian, C. Yan, L. Wei, L. Gao, J. Ju, Y. Zhao, N. Deng, B. Cheng, W. Kang, Small. 2021, 18, 2104469.
10.1002/smll.202104469 Google Scholar
- 17X. Yang, J. Liu, F. Chu, J. Lei, F. Wu, Mater. Today Energy. 2023, 35, 101318.
- 18S. Yang, J. Choi, R. Saroha, S. Cho, Y. Kang, J. Cho, J. Colloid Interface Sci. 2023, 645, 33.
- 19W. Wang, K. Xi, B. Li, H. Li, S. Liu, J. Wang, H. Zhao, H. Li, A. Abdelkader, X. Gao, G. Li, Adv. Energy Mater. 2022, 12, 2200160.
- 20P. Wan, S. Dong, J. Xiong, X. Jin, S. Lu, Y. Zhang, H. Fan, J. Colloid Interface Sci. 2023, 650, 582.
- 21W. Yan, J. Yang, X. Xiong, L. Fu, Y. Chen, Z. Wang, Y. Zhu, J. Zhao, T. Wang, Y. Wu, Adv. Sci. 2022, 9, 2202204.
- 22B. Yang, D. Guo, P. Lin, L. Zhou, J. Li, G. Fang, J. Wang, H. Jin, X. Chen, S. Wang, Angew. Chem., Int. Ed. Engl. 2022, 61, 202204327.
- 23H. Wang, C. Fan, X. Li, X. Wu, H. Li, H. Sun, H. Xie, J. Zhang, C. Tong, Electrochimica Acta. 2017, 244, 86.
- 24X. Yu, Y. Yin, C. Ma, J. Xu, W. Qiao, J. Wang, L. Ling, Chem. Eng. Sci. 2023, 268, 118400.
- 25P. Geng, M. Du, C. Wu, T. Luo, Y. Zhang, H. Pang, Inorg. Chem. Front. 2022, 9, 2389.
- 26F. Pei, L. Lin, A. Fu, S. Mo, D. Ou, X. Fang, N. Zheng, Joule. 2018, 2, 323.
- 27P. Han, S. Chung, A. Manthiram, Small. 2019, 15, 1900690.
- 28T. Hou, X. Chen, H. Peng, J. Huang, B. Li, Q. Zhang, B. Li, Small. 2016, 12, 3283.
- 29P. Geng, M. Du, X. Guo, H. Pang, Z. Tian, P. Braunstein, Q. Xu, Energy Environ. Mater. 2022, 5, 599.
- 30M. Zhu, S. Li, J. Liu, B. Li, Appl. Surf. Sci. 2019, 473, 1002.
- 31Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Energy Environ. Sci. 2016, 9, 3230.
- 32R. Xiao, D. Luo, J. Wang, H. Lu, H. Ma, E. Akinoglu, M. Jin, X. Wang, Y. Zhang, Z. Chen, Adv. Sci. 2022, 9, 2202.
- 33W. Ma, Z. Shao, J. Yao, K. Zhao, X. Ma, L. Wu, X. Zhang, J. Colloid Interface Sci. 2023, 631, 114.
- 34L. Ma, Y. Wang, Z. Wang, J. Wang, Y. Cheng, J. Wu, B. Peng, J. Xu, W. Zhang, Z. Jin, ACS Nano. 2023, 17, 11527.
- 35T. Jeong, D. Choi, H. Song, J. Choi, S. Park, S. Hyoung, H. Kim, Y. Jung, Y. Kim, ACS Energy Lett. 2017, 2, 327.
- 36M. Zhao, H. Peng, Z. Zhang, B. Li, X. Chen, J. Xie, X. Chen, J. Wei, Q. Zhang, J. Huang, Angew. Chem., Int. Ed. 2019, 58, 3779.
- 37Z. Xiong, J. Li, Y. Sun, Y. Lin, L. Du, Z. Wei, M. Wu, K. Shi, Q. Liu, J. Alloys Compd. 2022, 899, 163245.
- 38L. Zhang, J. Yang, X. Wang, B. Zhao, G. Zheng, Nanoscale Res. Lett. 2014, 9, 448.
- 39D. Li, Q. Zhou, G. Wang, H. Zhao, S. Ma, K. Leng, Y. Wang, J. Bai, J. Mater. Sci. 2020, 55, 15551.
- 40R. Xiao, D. Luo, J. Wang, H. Lu, H. Ma, E. Akinoglu, M. Jin, X. Wang, Y. Zhang, Z. Chen, Adv. Sci. 2022, 9, 2202352.
- 41B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song, C. Zhao, M. Wang, X. Sun, H. Huang, C. Zhao, H. Zhou, A. Chen, L. Fan, N. Zhang, Adv. Energy Mater. 2021, 11, 21029.
- 42Y. Tang, X. Wang, J. Chen, X. Wang, D. Wang, Z. Mao, Carbon. 2021, 174, 98.
- 43M. Luo, Y. Bai, R. Sun, M. Qu, M. Wang, Z. Yang, Z. Wang, W. Sun, K. Sun, J. Energy Chem. 2022, 73, 407.
- 44T. Huang, Y. Sun, J. Wu, J. Jin, C. Wei, Z. Shi, M. Wang, J. Cai, X. An, P. Wang, C. Su, Y. Li, J. Sun, ACS Nano. 2021, 15, 14105.
- 45X. Zhao, T. Gao, W. Ren, C. Zhao, Z. Liu, L. Li, J. Energy Chem. 2022, 75, 250.
- 46H. Zhao, T. Gu, Y. Zhen, Z. Li, X. Shen, Q. Jiao, Y. Zhao, H. Li, Y. Zhang, C. Feng, J. Alloys Compd. 2023, 953, 170171.
- 47J. Wang, W. Qiu, G. Li, J. Liu, D. Luo, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, X. Wang, Z. Chen, Energy Storage Mater. 2022, 46, 269.
- 48H. Li, W. Zheng, H. Wu, Y. Fang, L. Li, W. Yuan, Small. 2023, 2306140, https://doi.org/10.1002/smll.202306140.
10.1002/smll.202306140 Google Scholar
- 49Y. Liu, Z. Ma, G. Yang, Z. Wu, Y. Li, J. Gu, J. Gautam, X. Gong, A. Chishti, S. Duan, C. Chen, M. Chen, L. Ni, G. Diao, Adv. Funct. Mater. 2022, 32, 2109462.
- 50Z. Li, Y. Zhou, Y. Wang, Y. Lu, Adv. Energy Mater. 2019, 9, 1802207.
- 51D. Cai, J. Yang, T. Liu, S.-X.i Zhao, G. Cao, Nano Energy. 2021, 89, 106452.
- 52J. Zu, W. Jing, X. Dai, Z. Feng, J. Sun, Q. Tan, Y. Chen, Y. Liu, J. Alloys Compd. 2023, 933, 167767.
- 53M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan, W. Hu, L. Ni, H. Pang, Angew. Chem., Int. Ed. 2022, 61, e202209350.
- 54J. Zhu, X. Dong, Q. Zeng, F. Liang, S. Ning, G. Wang, P. Shen, S. Ma, Chem. Eng. J. 2023, 460, 141811.
- 55W. Sun, S. Liu, Y. Li, D. Wang, Q. Guo, X. Hong, K. Xie, Z. Ma, C. Zheng, S. Xiong, Adv. Funct. Mater. 2022, 32, 2205471.
- 56P. Geng, L. Wang, M. Du, Y. Bai, W. Li, Y. Liu, S. Chen, P. Braunstein, Q. Xu, H. Pang, Adv. Mater. 2022, 34, 2107836.