Platinum–Ruthenium Dual-Atomic Sites Dispersed in Nanoporous Ni0.85Se Enabling Ampere-Level Current Density Hydrogen Production
Lebin Cai
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorHaoyun Bai
Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078 China
Search for more papers by this authorCheng-wei Kao
National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
Search for more papers by this authorKang Jiang
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorHui Pan
Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078 China
Search for more papers by this authorCorresponding Author
Ying-Rui Lu
National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yongwen Tan
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLebin Cai
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorHaoyun Bai
Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078 China
Search for more papers by this authorCheng-wei Kao
National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
Search for more papers by this authorKang Jiang
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorHui Pan
Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078 China
Search for more papers by this authorCorresponding Author
Ying-Rui Lu
National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yongwen Tan
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Alkaline anion-exchange-membrane water electrolyzers (AEMWEs) using earth-abundant catalysts is a promising approach for the generation of green H2. However, the AEMWEs with alkaline electrolytes suffer from poor performance at high current density compared to proton exchange membrane electrolyzers. Here, atomically dispersed Pt-Ru dual sites co-embedded in nanoporous nickel selenides (np/Pt1Ru1-Ni0.85Se) are developed by a rapid melt-quenching approach to achieve highly-efficient alkaline hydrogen evolution reaction. The np/Pt1Ru1-Ni0.85Se catalyst shows ampere-level current density with a low overpotential (46 mV at 10 mA cm−2 and 225 mV at 1000 mA cm−2), low Tafel slope (32.4 mV dec−1), and excellent long-term durability, significantly outperforming the benchmark Pt/C catalyst and other advanced large-current catalysts. The remarkable HER performance of nanoporous Pt1Ru1-Ni0.85Se is attributed to the strong intracrystal electronic metal-support interaction (IEMSI) between Pt-Se-Ru sites and Ni0.85Se support which can greatly enlarge the charge redistribution density, reduce the energy barrier of water dissociation, and optimize the potential determining step. Furthermore, the assembled alkaline AEMWE with an ultralow Pt and Ru loading realizes an industrial-level current density of 1 A cm−2 at 1.84 volts with high durability.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202311178-sup-0001-SuppMat.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 2S. Chu, A. Majumdar, Nature 2012, 488, 294.
- 3O. J. Guerra, J. Eichman, J. Kurtz, B.-M. Hodge, Joule 2019, 3, 2425.
- 4P. Trogadas, M.-O. Coppens, Chem. Soc. Rev. 2020, 49, 3107.
- 5Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 2022, 51, 9620.
- 6N. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, C. Bock, Chem. Rev. 2022, 122, 11830.
- 7A. G. Wallace, M. D. Symes, Joule 2018, 2, 1390.
- 8L. Gao, F. Bao, X. Tan, M. Li, Z. Shen, X. Chen, Z. Tang, W. Lai, Y. Lu, P. Huang, C. Ma, S. C. Smith, Z. Ye, Z. Hu, H. Huang, Energy Environ. Sci. 2023, 16, 285.
- 9P. Zhai, Y. Zhang, Y. Wu, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, L. Sun, J. Hou, Nat. Commun. 2020, 11, 5462.
- 10X. Fu, D. Cheng, C. Wan, S. Kumari, H. Zhang, A. Zhang, H. Huyan, J. Zhou, H. Ren, S. Wang, Z. Zhao, X. Zhao, J. Chen, X. Pan, P. Sautet, Y. Huang, X. Duan, Adv. Mater. 2023, 35, 2301533.
- 11D. Cao, Z. Zhang, Y. Cui, R. Zhang, L. Zhang, J. Zeng, D. Cheng, Angew. Chem., Int. Ed. 2023, 62, 202214259.
- 12L. Dai, Z.-N. Chen, L. Li, P. Yin, Z. Liu, H. Zhang, Adv. Mater. 2020, 32, 1906915.
- 13Y. Sun, J. Wu, Z. Zhang, Q. Liao, S. Zhang, X. Wang, Y. Xie, K. Ma, Z. Kang, Y. Zhang, Energy Environ. Sci. 2022, 15, 633.
- 14K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y.-R. Lu, T.-S. Chan, F. M. F. De Groot, Y. Tan, Nat. Commun. 2019, 10, 1743.
- 15Q. He, D. Tian, H. Jiang, D. Cao, S. Wei, D. Liu, P. Song, Y. Lin, L. Song, Adv. Mater. 2020, 32, 1906972.
- 16Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen, X. Zheng, Z. Tian, N. Zhao, X. Han, K. Zaghib, Y. Wang, Y. Deng, W. Hu, Adv. Mater. 2022, 34, 2107053.
- 17H. Zhang, L. Yu, T. Chen, W. Zhou, X. W. Lou, Adv. Funct. Mater. 2018, 28, 1807086.
- 18X. Zheng, P. Li, S. Dou, W. Sun, H. Pan, D. Wang, Y. Li, Energy Environ. Sci. 2021, 14, 2809.
- 19Y. Chen, J. Lin, B. Jia, X. Wang, S. Jiang, T. Ma, Adv. Mater. 2022, 34, 2201796.
- 20P. Aggarwal, D. Sarkar, K. Awasthi, P. W. Menezes, Coord. Chem. Rev. 2022, 452, 214289.
- 21H. Zhang, X. Jin, J.-M. Lee, X. Wang, ACS Nano 2022, 16, 17572.
- 22R. Li, D. Wang, Adv. Energy Mater. 2022, 12, 2103564.
- 23W. Zhang, Y. Chao, W. Zhang, J. Zhou, F. Lv, K. Wang, F. Lin, H. Luo, J. Li, M. Tong, E. Wang, S. Guo, Adv. Mater. 2021, 33, 2102576.
- 24K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen, Y.-R. Lu, T.-S. Chan, F. M. F. De Groot, Y. Tan, Nat. Commun. 2021, 12, 1687.
- 25W. Zhao, C. Luo, Y. Lin, G.-B. Wang, H. M. Chen, P. Kuang, J. Yu, ACS Catal. 2022, 12, 5540.
- 26M. Li, H. Zhu, Q. Yuan, T. Li, M. Wang, P. Zhang, Y. Zhao, D. Qin, W. Guo, B. Liu, X. Yang, Y. Liu, Y. Pan, Adv. Funct. Mater. 2023, 33, 2210867.
- 27L. Han, P. Ou, W. Liu, X. Wang, H.-T. Wang, R. Zhang, C.-W. Pao, X. Liu, W.-F. Pong, J. Song, Z. Zhuang, M. V. Mirkin, J. Luo, H. L. Xin, Sci. Adv. 2022, 8, abm3779.
- 28C. Cai, K. Liu, L. Zhang, F. Li, Y. Tan, P. Li, Y. Wang, M. Wang, Z. Feng, D. Motta Meira, W. Qu, A. Stefancu, W. Li, H. Li, J. Fu, H. Wang, D. Zhang, E. Cortés, M. Liu, Angew. Chem., Int. Ed. 2023, 62, 202300873.
- 29L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang, K. Adair, Z. Wang, J. Chen, Z. Song, J. Li, M. N. Banis, R. Li, T.-K. Sham, M. Gu, L.-M. Liu, G. A. Botton, X. Sun, Nat. Commun. 2019, 10, 4936.
- 30J. Yang, W. Li, D. Wang, Y. Li, Adv. Mater. 2020, 32, 2003300.
- 31J. Yang, W.-H. Li, S. Tan, K. Xu, Y. Wang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2021, 60, 19085.
- 32Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang, Z.-C. Huang, Y.-Z. Zheng, F.-Y. Mu, R. Huang, G.-Y. Shi, Y.-Y. Sun, X.-H. Xia, W. Chen, Nat. Commun. 2021, 12, 3021.
- 33Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu, D. Do, B. Zhou, J. Dong, W. Yan, Y. Qin, L. Fang, R. Feng, J. Zhou, P. Zhang, J. Dong, G. Yu, Y. Liu, X. Zhang, X. Fan, Sci. Adv. 2020, 6, eaba6586.
- 34Y. He, F. Yan, X. Zhang, C. Zhu, Y. Zhao, B. Geng, S. Chou, Y. Xie, Y. Chen, Adv. Energy Mater. 2023, 13, 2204177.
- 35K. Jiang, Z. Liu, Y.-R. Lu, M. Wang, D. Chen, L. Cai, T.-S. Chan, P. Liu, A. Pan, Y. Tan, Adv. Mater. 2022, 35, 2207850.
- 36J. Li, F. L. Deepak, Chem. Rev. 2022, 122, 16911.
- 37Q. Li, B. Wei, Y. Li, J. Xu, J. Li, L. Liu, F. L. Deepak, ACS Sustainable Chem. Eng. 2019, 7, 9842.
- 38J. Li, Z. Lian, Q. Li, Z. Wang, L. Liu, F. L. Deepak, Y. Liu, B. Li, J. Xu, Z. Zhen, Nano Res. 2022, 15, 5933.
- 39Y. Liu, X. Liu, A. R. Jadhav, T. Yang, Y. Hwang, H. Wang, L. Wang, Y. Luo, A. Kumar, J. Lee, H. T. D. Bui, M. Gyu Kim, H. Lee, Angew. Chem., Int. Ed. 2022, 61, 202114160.
- 40Z. Shi, X. Zhang, X. Lin, G. Liu, C. Ling, S. Xi, B. Chen, Y. Ge, C. Tan, Z. Lai, Z. Huang, X. Ruan, L. Zhai, L. Li, Z. Li, X. Wang, G.-H. Nam, J. Liu, Q. He, Z. Guan, J. Wang, C.-S. Lee, A. R. J. Kucernak, H. Zhang, Nature 2023, 621, 300.
- 41C. Cai, K. Liu, L. Zhang, F. Li, Y. Tan, P. Li, Y. Wang, M. Wang, Z. Feng, D. Motta Meira, W. Qu, A. Stefancu, W. Li, H. Li, J. Fu, H. Wang, D. Zhang, E. Cortés, M. Liu, Angew. Chem., Int. Ed. 2023, 62, 202300873.
- 42D. Cao, Z. Zhang, Y. Cui, R. Zhang, L. Zhang, J. Zeng, D. Cheng, Angew. Chem., Int. Ed. 2023, 62, 202214259.
- 43H. Hu, L. Zhou, F. Duan, H. Zhu, H. Gu, S. Lu, M. Du, J. Mater. Chem. A 2022, 10, 23294.
- 44K. Wang, S. Wang, K. S. Hui, J. Li, C. Zha, D. A. Dinh, Z. Shao, B. Yan, Z. Tang, K. N. Hui, Adv. Funct. Mater. 2023, 33, 2211273.
- 45Y. Zhang, K. E. Arpino, Q. Yang, N. Kikugawa, D. A. Sokolov, C. W. Hicks, J. Liu, C. Felser, G. Li, Nat. Commun. 2022, 13, 1.
- 46K. Jang, H. Yoon, J. S. Hyoung, D. S. A. Pratama, C. W. Lee, D.-W. Kim, Appl. Catal., B 2024, 341, 123327.
- 47D. Wu, D. Chen, J. Zhu, S. Mu, Small 2021, 17, 2102777.
- 48W. Li, R. Liu, G. Yu, X. Chen, S. Yan, S. Ren, J. Chen, W. Chen, C. Wang, X. Lu, Small 2023, https://doi.org/10.1002/smll.202307164.
10.1002/smll.202307164 Google Scholar
- 49W. Yang, P. Cheng, Z. Li, Y. Lin, M. Li, J. Zi, H. Shi, G. Li, Z. Lian, H. Li, Adv. Funct. Mater. 2022, 32, 2205920.
- 50Y. Zou, S. A. Kazemi, G. Shi, J. Liu, Y. Yang, N. M. Bedford, K. Fan, Y. Xu, H. Fu, M. Dong, M. Al-Mamun, Y. L. Zhong, H. Yin, Y. Wang, P. Liu, H. Zhao, EcoMat 2023, 5, 12274.
- 51Y. Huang, X. Chong, C. Liu, Y. Liang, B. Zhang, Angew. Chem., Int. Ed. 2018, 57, 13163.
- 52P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
- 53G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 54W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
- 55J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.